J. E. Marsden, M. McCracken (auth.)9780387902005, 0387902007
Table of contents :
Front Matter….Pages i-xiii
Introduction to Stability and Bifurcation in Dynamical Systems and Fluid Mechanics….Pages 1-26
The Center Manifold Theorem….Pages 27-49
Some Spectral Theory….Pages 50-55
The Poincaré Map….Pages 56-62
The Hopf Bifurcation Theorem in ℝ 2 and in ℝ n ….Pages 63-84
Other Bifurcation Theorems….Pages 85-90
More General Conditions for Stability….Pages 91-94
Hopf’s Bifurcation Theorem and the Center Theorem of Liapunov….Pages 95-103
Computation of the Stability Condition….Pages 104-130
How to use the Stability Formula; An Algorithm….Pages 131-135
Examples….Pages 136-150
Hopf Bifurcation and the Method of Averaging….Pages 151-162
A Translation of Hopf’s Original Paper….Pages 163-193
Editorial Comments….Pages 194-205
The Hopf Bifurcation Theorem for Diffeomorphisms….Pages 206-218
The Canonical Form….Pages 219-223
Bifurcations with Symmetry….Pages 224-229
Bifurcation Theorems for Partial Differential Equations….Pages 250-257
Notes on Nonlinear Semigroups….Pages 258-284
Bifurcations in Fluid Dynamics and the Problem of Turbulence….Pages 285-303
On a Paper of G. Iooss….Pages 304-314
On a Paper of Kirchgässner and Kielhöffer….Pages 315-326
Bifurcation Phenomena in Population Models….Pages 327-353
A Mathematical Model of Two Cells Via Turing’s Equation….Pages 354-367
A Strange, Strange Attractor….Pages 368-381
Back Matter….Pages 382-408
Reviews
There are no reviews yet.