Compact Convex Sets and Boundary Integrals

Free Download

Authors:

Edition: 1

Series: Ergebnisse der Mathematik und ihrer Grenzgebiete 57

ISBN: 9780387050904, 0387050906, 3540050906

Size: 2 MB (2074996 bytes)

Pages: 212/112

File format:

Language:

Publishing Year:

Tags: ,

Erik M. Alfsen (auth.)9780387050904, 0387050906, 3540050906

The importance of convexity arguments in functional analysis has long been realized, but a comprehensive theory of infinite-dimensional convex sets has hardly existed for more than a decade. In fact, the integral representation theorems of Choquet and Bishop -de Leeuw together with the uniqueness theorem of Choquet inaugurated a new epoch in infinite-dimensional convexity. Initially considered curious and tech­ nically difficult, these theorems attracted many mathematicians, and the proofs were gradually simplified and fitted into a general theory. The results can no longer be considered very “deep” or difficult, but they certainly remain all the more important. Today Choquet Theory provides a unified approach to integral representations in fields as diverse as potential theory, probability, function algebras, operator theory, group representations and ergodic theory. At the same time the new concepts and results have made it possible, and relevant, to ask new questions within the abstract theory itself. Such questions pertain to the interplay between compact convex sets K and their associated spaces A(K) of continuous affine functions; to the duality between faces of K and appropriate ideals of A(K); to dominated­ extension problems for continuous affine functions on faces; and to direct convex sum decomposition into faces, as well as to integral for­ mulas generalizing such decompositions. These problems are of geometric interest in their own right, but they are primarily suggested by applica­ tions, in particular to operator theory and function algebras.

Table of contents :
Front Matter….Pages I-XI
Representation of Points by Boundary Measures….Pages 1-65
Structure of Compact Convex Sets….Pages 67-187
Back Matter….Pages 189-212

Reviews

There are no reviews yet.

Be the first to review “Compact Convex Sets and Boundary Integrals”
Shopping Cart
Scroll to Top