P.J. Gellings, H.J.M. Bouwmeester0849389569, 9780849389566
Table of contents :
The CRC Handbook of Solid State Electrochemistry……Page 1
About the Editors……Page 3
Contributors……Page 4
In Memoriam……Page 6
Preface……Page 7
Table of Contents……Page 8
II. General Scope……Page 10
Contents……Page 0
A. Types of Defects……Page 11
C. Defect Equilibria……Page 14
IV. Elementary Considerations of the Kinetics of Electrode Reactions……Page 15
References……Page 17
PRINCIPLES OF ELECTROCHEMISTRY……Page 18
II. FARADAYÌS LAW AND ELECTROLYTIC CONDUCTIVITY……Page 19
III. THE GALVANIC CELL AT THERMODYNAMIC EQUILIBRIUM……Page 20
IV. ELECTROSTATIC POTENTIALS: GALVANI POTENTIAL, VOLTA POTENTIAL, SURFACE POTENTIAL……Page 22
V. ELECTROCHEMICAL EQUILIBRIUM AT INTERFACES……Page 25
A. REFERENCE ELECTRODES……Page 28
B. ELECTROMOTIVE SERIES……Page 30
A. METAL/ELECTROLYTE INTERFACES……Page 33
B. SEMICONDUCTOR/ELECTROLYTE INTERFACES……Page 39
C. MEMBRANE/ELECTROLYTE INTERFACES……Page 43
VIII. KINETICS OF ELECTRON TRANSFER REACTIONS AT INTERFACES……Page 44
A. GENERAL CONCEPTS OF ELECTRON TRANSFER……Page 45
B. ELECTRON TRANSFER AT METAL ELECTRODES……Page 49
C. ELECTRON TRANSFER AT SEMICONDUCTOR ELECTRODES……Page 54
A. LIQUID METALS……Page 59
B. SOLID METALS……Page 62
C. SEMICONDUCTORS……Page 66
A. CURRENT AND POTENTIAL STEP……Page 69
B. IMPEDANCE SPECTROSCOPY……Page 72
XI. MECHANISMS OF ELECTRODE REACTIONS AND ELECTROCATALYSIS……Page 75
A. HYDROGEN ELECTRODE……Page 76
B. OXYGEN ELECTRODE……Page 79
C. GENERAL REMARKS……Page 80
REFERENCES……Page 81
SOLID STATE BACKGROUND……Page 83
II. THE SOLID STATE……Page 84
1. Glasses……Page 85
1. Molecular Solids……Page 87
c. Ionic Solids……Page 89
III. LATTICE ENERGY……Page 91
IV. THE CRYSTAL LATTICE AND UNIT CELLS……Page 95
V. CLOSE PACKING……Page 96
A. INTERSTITIAL SITES……Page 99
B. POLYHEDRAL REPRESENTATIONS OF CLOSE PACKING……Page 100
a. NiAs……Page 102
b. ZnS (Wurtzite)……Page 103
a. NaCl (Rock Salt)……Page 104
b. CaF2 (Fluorite)……Page 105
a. CdCl2 and CdI……Page 106
c. ReO3……Page 108
e. MgAl2O4 (Spinel)……Page 109
VI. CRYSTAL DEFECTS……Page 110
A. ENERGETICS OF DEFECT FORMATION……Page 111
B. CLASSIFICATION OF CRYSTAL DEFECTS……Page 112
a. Intrinsic Defects……Page 113
b. Extrinsic Defects……Page 115
2. Defect Clusters……Page 116
3. Dislocations……Page 117
4. Stacking Faults……Page 118
5. Grain Boundaries……Page 119
C. MOVEMENT OF DEFECTS……Page 120
A. SUBSTITUTIONAL SOLID SOLUTIONS……Page 122
2. Cation Interstitials……Page 123
4. Anion Interstitials……Page 124
C. MONITORING OF SOLID SOLUTION FORMATION……Page 125
REFERENCES……Page 126
INTERFACE ELECTRICAL PHENOMENA IN IONIC SOLIDS……Page 128
LIST OF SYMBOLS AND ABBREVIATIONS……Page 129
ABSTRACT……Page 130
I. INTRODUCTION……Page 131
4. Interface Layer……Page 132
9. Grain Boundary……Page 133
C. DEFECT STRUCTURE……Page 134
A. WORK FUNCTION……Page 135
B. THERMOPOWER……Page 139
C. ELECTRICAL CONDUCTIVITY……Page 141
D. THE JONKER ANALYSIS……Page 144
E. CONCLUSIONS……Page 145
B. IONOSORPTION……Page 146
C. INCORPORATION OF OXYGEN INTO THE BOUNDARY LAYER……Page 147
D. BULK EQUILIBRATION KINETICS……Page 149
1. Segregation of Foreign Elements……Page 152
2. Segregation of Host Elements……Page 156
B. SEGREGATION-INDUCED BIDIMENSIONAL INTERFACE STRUCTURES……Page 157
C. EFFECT OF IMPURITIES ON THE SURFACE STATE IN EQUILIBRIUM……Page 158
D. CONCLUSIONS……Page 159
B. TRANSPORT ACROSS INTERFACES……Page 160
C. CONCLUSIONS……Page 161
VII. APPLIED ASPECTS……Page 162
ACKNOWLEDGMENTS……Page 164
REFERENCES……Page 165
I. INTRODUCTION……Page 167
A. DEFECTS AND NONSTOICHIOMETRY IN BINARY COMPOUNDS……Page 169
1. Metal Halides……Page 171
2. Transition Metal Oxides……Page 175
B. GENERALIZED APPROACH TO THE DEFECT CHEMISTRY OF TERNARY COMPOUNDS……Page 178
1. Variation of Defect Concentrations with a o and P……Page 179
2. Composition and Defect Chemistry……Page 181
3. Defect Diagrams……Page 184
4. Application to Several Ternary Compounds……Page 186
C. MULTINARY COMPOUNDS……Page 190
D. MULTICOMPONENT MATERIALS……Page 193
III. CONCLUDING REMARKS……Page 195
REFERENCES……Page 196
II. OXIDE ION CONDUCTORS……Page 201
III. FLUORIDE ION CONDUCTORS……Page 205
IV. SILVER AND COPPER ION CONDUCTORS……Page 207
V. SODIUM AND POTASSIUM ION CONDUCTORS……Page 209
VI. LITHIUM ION CONDUCTORS……Page 213
VII. PROTON CONDUCTORS……Page 219
VIII. POLYMER SOLID ELECTROLYTES……Page 223
REFERENCES……Page 225
ELECTROCHEMISTRY OF MIXED IONIC Ò ELECTRONIC CONDUCTORS……Page 228
LIST OF SYMBOLS……Page 230
A. GENERAL……Page 232
B. HIGH-DISORDER MIXED CONDUCTORS……Page 234
C. COMPARABLE CONCENTRATIONS OF MOBILE IONS AND ELECTRONS OR HOLES……Page 236
F. MISCELLANEOUS MIXED CONDUCTORS……Page 237
A. GENERAL……Page 239
1. General Relations……Page 242
3. Short-Circuit Conditions……Page 243
1. General Relations……Page 244
2. Polarization Conditions……Page 245
4. Open-Circuit Conditions……Page 246
1. General Relations……Page 247
E. I-V RELATIONS WHEN THE ELECTRON OR HOLE CONCENTRATION IS HIGH……Page 248
1. General Relations……Page 249
2. Polarization Conditions……Page 250
4. One Ion-Blocking Electrode and Three Reversible Electrodes……Page 251
H. I-V RELATIONS FOR MIXED VALENCE IONIC-ELECTRONIC CONDUCTORS……Page 252
A. HEBB–WAGNER POLARIZATION METHOD FOR DETERMINING σe AND σh……Page 253
B. THE ANALOG OF THE HEBB–WAGNER METHOD FOR DETERMINING σ……Page 254
D. MEASURING THE IONIC CONDUCTIVITY BY THE “SHORT-CIRCUITING” METHOD……Page 255
H. DETERMINING PARTIAL CONDUCTIVITY BY PERMEATION MEASUREMENTS……Page 256
K. COPING WITH ELECTRODE OVERPOTENTIAL……Page 257
B. VOLTAGE RESPONSE TO A STEP CHANGE IN THE APPLIED CURRENT……Page 258
4. Change in Optical Properties……Page 259
3. Use of Work Function Measurements……Page 260
B. ELECTRON DISTRIBUTION WHEN HIGH DISORDER PREVAILS……Page 261
C. ELECTRON AND HOLE DISTRIBUTIONS WHEN HIGH DISORDER PREVAILS……Page 262
A. GALVANIC CELLS WITH DIFFERENT MIECS CONNECTED IN SERIES……Page 263
VIII. MAGNETIC MEASUREMENTS ON MIXED CONDUCTORS……Page 264
2. Insertion Electrodes……Page 265
7. Catalysis……Page 266
2. The Use of Mixed Conductors Instead of Solid Electrolytes in EMF Sensors……Page 267
ACKNOWLEDGMENT……Page 268
REFERENCES……Page 269
Electrodics……Page 274
List of Symbols……Page 275
I. Introduction……Page 276
1. Cathodes in Solid Oxide Fuel Cells……Page 278
2. Anodes in SOFCs……Page 280
4. Solid/Solid Interfaces at Electrodes……Page 281
7. Electron-Blocking Electrodes……Page 282
9. Electrodes as Catalysts……Page 284
1. General……Page 285
3. Probes for Measuring Dmi……Page 286
A. Introduction, Single Crystals……Page 287
D. Effect of Electric Fields Applied Perpendicular to the Grain Boundary……Page 288
A. General……Page 289
2. Four-Point Method……Page 290
4. Use of High dc Voltages……Page 291
5. Overpotential at Ion-Blocking Electrodes……Page 292
C. ac Impedance Measurements……Page 293
D. I-V relations……Page 296
E. Diffusion in Intercalation Electrodes……Page 297
References……Page 298
I. INTRODUCTION……Page 300
A. FORMATION OF GALVANIC CELL VOLTAGES……Page 301
B. GALVANIC CELL CURRENTS……Page 302
A. DETERMINATION OF PHASE EQUILIBRIA……Page 305
B. DETERMINATION OF GIBBS ENERGIES OF FORMATION……Page 310
1. Conductivity of Majority Charge Carriers (Ions)……Page 313
2. Conductivity of Minority Charge Carriers (Electrons, Holes)……Page 315
a. Voltage Relaxation Method24……Page 318
b. Charge Transfer Technique25……Page 319
1. Partial Ionic Conductivity……Page 320
3. Chemical Diffusion……Page 322
a. Galvanostatic Intermittent Titration Technique (GITT)6,28……Page 324
b. Potential Step Technique30……Page 326
C. KINETICS OF SOLID STATE REACTIONS……Page 327
REFERENCES……Page 330
ELECTROCHEMICAL SENSORS……Page 333
LIST OF SYMBOLS……Page 334
I. INTRODUCTION……Page 335
1. Fundamental Principles……Page 336
b. Ionic Junction of the Second Kind……Page 337
c. Electrode Reaction of the First Kind……Page 340
d. Electrode Reaction of the Second Kind……Page 341
e. Ionic Exchange at Interfaces……Page 342
f. Electrochemical Chain……Page 343
a. Solid Internal Reference Systems……Page 344
b. Interfering Phenomena……Page 347
d. Limit of Detection……Page 349
a. Working Temperature……Page 350
b. Reference Systems……Page 353
c. Influence of Electronic Conductivity……Page 354
d. Interfering Phenomena……Page 357
1. Principle……Page 358
3. Different Species Analyzed by Amperometry……Page 360
a. Electrochemical Purge Devices……Page 362
1. Direct Current Mode……Page 363
E. CONDUCTOMETRIC SENSORS……Page 364
1. Principle……Page 365
2. Achievements……Page 366
B. RESPONSE TIME……Page 367
C. SENSITIVITY……Page 368
IV. CONCLUSION AND PROSPECTS……Page 369
REFERENCES……Page 370
SOLID STATE BATTERIES……Page 374
I. INTRODUCTION……Page 375
A. ADVANTAGES OF SOLID STATE BATTERY TECHNOLOGY……Page 376
B. POTENTIAL EFFECTS ON ENERGY CONSERVATION……Page 377
C. REQUIREMENTS OF SOLID STATE BATTERY TECHNOLOGY……Page 378
D. ADVANCED PROJECTS……Page 380
1. Sodium Sulfur Batteries……Page 382
2. Lithium Iron Sulfide Batteries……Page 384
3. Sodium Chloride Batteries……Page 385
1. Lithium-Polymer Intercalation Compound Batteries……Page 386
2. Solid Redox Polymerized Electrode Batteries……Page 388
1. Lithium-Iodine Cells……Page 389
4. Lithium Bromine Trifluoride Battery……Page 390
E. SECONDARY INSERTION CATHODE LITHIUM BATTERIES……Page 391
1. Li/TiS 2 Battery……Page 393
3. Li-NbSe 3 Battery……Page 394
5. Li/MnO 2 Battery……Page 395
F. LIQUID ELECTROLYTE PRIMARY LITHIUM BATTERIES……Page 396
2. Lithium Oxide-Compounds Cell……Page 397
1. Silver Cells……Page 398
2. Copper Cells……Page 399
A. PRINCIPLE……Page 400
B. ELECTRODES FOR ROCKING-CHAIR BATTERIES……Page 401
C. ROCKING-CHAIR BATTERIES……Page 402
A. SILVER AND COPPER MICROBATTERIES……Page 403
2. Lithium Microbatteries with Chalcogenide Cathode……Page 404
3. Lithium Microbatteries with Oxide Cathode……Page 406
REFERENCES……Page 407
II. INTRODUCTION……Page 411
III. ADVANTAGES AND DRAWBACKS OF SOLID OXIDE FUEL CELLS……Page 412
IV. ELECTROLYTES……Page 413
V. CATHODE MATERIALS AND INTERFACIAL REACTIONS……Page 417
VI. ANODE MATERIALS……Page 423
VII. INTERCONNECTION MATERIALS (INTERCONNECTS)……Page 426
A. THE TUBULAR CONFIGURATION……Page 428
B. MONOLITHIC SOLID OXIDE FUEL CELLS (MSOFCs)……Page 433
C. THE PLANAR (BIPOLAR PLATE) DESIGN……Page 435
X. MANUFACTURING PROCESSES……Page 439
ACKNOWLEDGMENT……Page 442
REFERENCES……Page 443
ELECTROCATALYSIS AND ELECTROCHEMICAL REACTORS……Page 449
LIST OF ABBREVIATIONS AND SYMBOLS……Page 450
A. GENERAL CONSIDERATIONS……Page 451
B. THERMODYNAMIC CONSIDERATIONS……Page 453
C. TYPES OF OVERPOTENTIAL……Page 454
D. EXCHANGE CURRENT DENSITY AND ELECTROCATALYTIC ACTIVITY……Page 456
A. ELECTROCATALYSIS FOR THE PRODUCTION OF CHEMICALS……Page 460
B. ELECTROCHEMICAL REACTOR ANALYSIS AND DESIGN……Page 462
A. POTENTIOMETRIC INVESTIGATIONS……Page 463
B. ELECTROCHEMICAL ACTIVATION OF CATALYZED REACTIONS……Page 468
1. Introduction……Page 470
2. Experimental Setup……Page 471
3. Catalytic Rate Modification……Page 472
5. Definitions and the Role of the Exchange Current I0……Page 474
7. Work Function Measurements: An Additional Meaning of the EMF of Solid Electrolyte Cells with Metal Electrodes……Page 478
8. Dependence of Catalytic Rates and Activation Energies on eF……Page 479
9. XPS Spectroscopic and Voltammetric Identification of Back-spillover Ions as the Cause of NEMCA……Page 480
REFERENCES……Page 481
Dense Ceramic Membranes for Oxygen Separation……Page 485
LIST OF ABBREVIATIONS AND SYMBOLS……Page 486
I. Introduction……Page 488
II. General Survey……Page 489
A. Major Membrane Concepts……Page 490
C. Factors Controlling Oxygen Permeation……Page 492
1. Wagner Equation……Page 500
2. Chemical Diffusion Coefficient……Page 502
3. Trapping of Electronic and Ionic Defects……Page 503
4. Empirical Equations……Page 504
B. Surface Oxygen Exchange……Page 505
1. Characteristic Membrane Thickness……Page 506
2. Measuring Lc……Page 508
A. Introduction……Page 511
1. Diffusion of Electronic Charge Carriers……Page 512
2. Modeling Equations……Page 514
a. Calcia-Stabilized Zirconia……Page 515
b. Erbia-Stabilized Bismuth Oxide……Page 516
4. emf Measurements……Page 518
1. Oxygen Pump……Page 520
2. Dual-Phase Composites……Page 521
A. Introduction……Page 523
1. Perovskite Structure……Page 524
2. Nonstoichiometry……Page 525
3. Localized vs. Delocalized Electrons……Page 527
C. Oxygen Desorption and Perovskite Stability……Page 530
D. Equations for Oxygen Transport……Page 531
E. Electronic Conductivity……Page 533
1. Static Lattice Simulation……Page 535
3. Microdomain Formation……Page 537
4. Brownmillerite Structure……Page 538
5. High-Temperature NMR……Page 539
G. Observations from Permeability Measurements……Page 540
2. Experimental Difficulties……Page 541
4. Behavior in Large PO2 Gradients……Page 544
5. Grain Boundary Diffusivity……Page 545
VI. Final Remarks……Page 546
References……Page 548
List of Symbols……Page 558
I. Introduction……Page 559
B. The Oxidation of Metals and Alloys at High Temperatures……Page 560
C. Wagner’s Oxidation Theory……Page 561
D. The Sulfidation of Metals and Alloys……Page 568
2. Stability of the Sulfides……Page 569
5. Complications……Page 571
A. Introduction……Page 572
B. The Influence of an Electric Field on the Growth Rate……Page 574
C. Electrochemical Kinetic Studies Regarding the Formation of Sulfide Layers……Page 576
1. Potentiostatic Measurement……Page 577
2. Galvanostatic Measurement……Page 578
1. Introduction to Cyclic Voltammetry……Page 579
2. Mass Transfer, Initial, and Boundary Conditions……Page 580
3. Cyclic Voltammetry as a Tool for High-Temperature Corrosion……Page 582
a. The High-Temperature Oxidation of Ni……Page 583
b. The High-Temperature Oxidation of Cu……Page 586
c. The High-Temperature Oxidation of Co……Page 587
References……Page 588
I. INTRODUCTION……Page 590
II. SOME PROPERTIES OF W OXIDE FILMS: CASE STUDY……Page 592
III. SURVEY OF ELECTROCHROMISM AMONG THE OXIDES……Page 597
A. DEFECT PEROVSKITE STRUCTURE……Page 599
C. LAYER STRUCTURES……Page 601
A. LIQUID ELECTROLYTES……Page 602
B. SOLID INORGANIC ION CONDUCTORS……Page 606
C. POLYMER ELECTROLYTES……Page 609
V. CONCLUSIONS……Page 614
REFERENCES……Page 615
Reviews
There are no reviews yet.