Rainer Behrisch, Rainer Behrisch, Wolfgang Eckstein3540445005, 9783540445005
Table of contents :
cover.jpg……Page 1
front-matter.pdf……Page 2
Programs Based on the Binary Collision Approximation……Page 17
The Interaction Potential for BCA……Page 18
The Inelastic (Electronic) Energy Loss……Page 19
Dynamic Monte Carlo Programs……Page 20
Interatomic Potentials……Page 21
Electrons……Page 22
Initial State……Page 23
Reliability……Page 24
References……Page 25
Index……Page 27
Introduction……Page 28
Linear-Cascade Regime……Page 30
Preferential Sputtering……Page 32
Ionic Crystals……Page 35
Effect of Electronic Energy Loss and Electronic Excitations in Atomic Collision Cascades……Page 36
High-Energy-Density (Spike) Phenomena……Page 37
Sputtering from Fast-Ion-Induced Tracks……Page 39
Cluster Impact……Page 40
Larger Cluster Impact (n > 3)……Page 41
Cluster Emission……Page 43
Surface Topography Formation……Page 47
Surface Vacancy and Adatom Production……Page 48
Crater Production……Page 49
Effects of Surface Topography on Sputtering……Page 50
Effect of Surface Steps on Sputtering……Page 51
Fluence Dependence of Sputtering……Page 54
Diatomic and Small Anorganic Molecular Solids……Page 55
Sputtering of Polymers……Page 56
Chemical Effects……Page 57
Conclusions……Page 58
References……Page 59
Index……Page 67
Experimental Methods……Page 70
Calculational Methods……Page 72
Energy Dependence of the Sputtering Yield at Normal Incidence……Page 74
Fitting……Page 75
Comparison of Calculated Values with Experimental Data……Page 77
Angle of Incidence Dependence of the Sputtering Yield……Page 138
Single Crystalline Materials……Page 162
Multicomponent Targets……Page 163
Fluence Dependence……Page 164
Oscillations in the Partial Sputtering Yields……Page 165
Sputtering of Compounds……Page 166
Isotope Sputtering……Page 167
Temperature Dependence of the Sputtering Yield……Page 168
Yield Fluctuations……Page 169
Conclusions……Page 170
References……Page 208
Index……Page 225
Introduction……Page 227
Chemical Effects in Sputtering……Page 228
Physical Sputtering……Page 230
Chemical Sputtering……Page 231
Experimental Methods……Page 232
Mass Spectrometry……Page 233
Optical Emission Spectroscopy……Page 237
Dedicated Multiple Beam Experiments……Page 238
Thermal Process……Page 240
Species Released by Chemical Erosion……Page 243
Chemical Sputtering……Page 246
Temperature Dependence……Page 247
Energy Dependence……Page 248
Dependence on the Type of Graphite……Page 252
Flux Dependence……Page 253
Identification of Species Releasedby Chemical Sputtering……Page 254
Combined Irradiation with Noble Gas Ionsand Hydrogen Atoms……Page 257
Effect of Doping……Page 262
Chemical Sputtering with Molecular Ions at Low Energies……Page 263
Summary of Experimental Results……Page 265
Radiation Damage……Page 267
Low-temperature Near-surface Process, Ysurf……Page 268
Empirical Roth–GarcĂa-Rosales Formula……Page 269
Comparison with Erosion Data……Page 270
Extrapolation to Thermal Energies……Page 271
Chemical Sputtering Model by Hopf……Page 272
Molecular Dynamics Simulations……Page 275
Isotope Effect……Page 278
Effects due to Out-diffusion of Hydrocarbons……Page 280
Summary……Page 281
Oxygen……Page 282
Nitrogen……Page 284
References……Page 287
Index……Page 298
Introduction……Page 300
Special Problems in High-Energy Sputtering……Page 305
Measuring Techniques for Sputtering Yields……Page 306
Angular Distribution, Total Yield, and Fluence Effect……Page 309
Experimental Arrangements……Page 310
Dependence of Sputtering Yield on Angleof Beam Incidence……Page 315
Metallic Materials……Page 316
Total Sputtering Yields for Metallic Targets……Page 317
Angular Distributions of Sputtered Particlesfor Oxides……Page 320
Total Sputtering Yields for Oxides……Page 321
Angular Distributions of Sputtered Particlesfor Ionic Crystals……Page 322
Summary of Experimental Sputtering Dataof Different Materials……Page 325
Calculations Based on the Inelastic Thermal Spike Model……Page 327
Application to Metals……Page 333
Application to Insulators……Page 336
Thermal Spike Conclusion……Page 338
Concluding Remarks and Outlook……Page 339
References……Page 341
Index……Page 348
Introduction……Page 351
Energy Dissipation, Recoil Generation, and Sputtering……Page 353
Surface Binding Energy……Page 356
Post-Ionization of Sputtered Neutrals……Page 357
Electrostatic Energy Analysis……Page 358
Fluorescence Techniques……Page 359
Time-of-Flight Measurements……Page 360
Methods for Angular Distribution Measurements……Page 361
Energy and Angular Distributions in the Linear-Cascade Regime……Page 364
Energy Spectra of Ground- and Excited-State Atoms, and of Ions……Page 365
Energy Distributions of Atoms Sputtered from Alloys……Page 372
Energy Spectra of Sputtered Molecules……Page 374
Alkali Halides and Related Materials……Page 389
Condensed Gases……Page 391
Angular Distributions from Amorphous and Polycrystalline Targets……Page 395
Angular Spectra from Single Crystals……Page 397
Angular Distributions from Multicomponent Targets……Page 400
Energy and Angular Distributions in the Single-Knockon Regime……Page 403
Normal Incidence Bombardment……Page 405
Oblique Incidence Bombardment……Page 408
Angular Distributions at Low-Energy Irradiation……Page 411
Cluster-Ion Bombardment……Page 413
Yield Enhancement under Cluster Impact……Page 414
Energy Distributions under Cluster Bombardment……Page 415
Angular Distributions under Cluster Irradiation……Page 418
Summary……Page 420
References……Page 421
Index……Page 445
Overview……Page 450
The Sputtering Yield……Page 452
Surface Topography……Page 453
Analytic Theory……Page 456
Computer Calculations……Page 457
Sputtering Measurements……Page 458
Applications of Sputtering……Page 460
References……Page 461
Index……Page 468
back-matter.pdf……Page 470
Reviews
There are no reviews yet.