Applied Smoothing Techniques for Data Analysis: The Kernel Approach with S-Plus Illustrations

Free Download

Authors:

Series: Oxford Statistical Science Series

ISBN: 0198523963, 9780198523963, 9780585484105

Size: 2 MB (2161825 bytes)

Pages: 205/205

File format:

Language:

Publishing Year:

Category: Tags: , ,

Adrian W Bowman, Adelchi Azzalini0198523963, 9780198523963, 9780585484105

This book describes the use of smoothing techniques in statistics and includes both density estimation and nonparametric regression. Incorporating recent advances, it describes a variety of ways to apply these methods to practical problems. Although the emphasis is on using smoothing techniques to explore data graphically, the discussion also covers data analysis with nonparametric curves, as an extension of more standard parametric models. Intended as an introduction, with a focus on applications rather than on detailed theory, the book will be equally valuable for undergraduate and graduate students in statistics and for a wide range of scientists interested in statistical techniques.The text makes extensive reference to S-Plus, a powerful computing environment for exploring data, and provides many S-Plus functions and example scripts. This material, however, is independent of the main body of text and may be skipped by readers not interested in S-Plus.

Reviews

There are no reviews yet.

Be the first to review “Applied Smoothing Techniques for Data Analysis: The Kernel Approach with S-Plus Illustrations”
Shopping Cart
Scroll to Top