J. C. Nash9780852743188, 0852743181
Table of contents :
Compact Numerical Methods for Computers – Foreword……Page 1
page 2……Page 2
page 3……Page 3
page 4……Page 4
page 5……Page 5
page 6……Page 6
page 7……Page 7
page 8……Page 8
page 9……Page 9
page 10……Page 10
Compact Numerical Methods for Computers – Chapter 1 A Starting Point……Page 11
page 2……Page 12
page 3……Page 13
page 4……Page 14
page 5……Page 15
page 6……Page 16
page 7……Page 17
page 8……Page 18
page 9……Page 19
page 10……Page 20
page 11……Page 21
page 12……Page 22
page 13……Page 23
page 14……Page 24
page 15……Page 25
page 16……Page 26
page 17……Page 27
page 18……Page 28
Compact Numerical Methods for Computers – Chapter 2 FORMAL PROBLEMS IN LINEAR ALGEBRA……Page 29
page 2……Page 30
page 3……Page 31
page 4……Page 32
page 5……Page 33
page 6……Page 34
page 7……Page 35
page 8……Page 36
page 9……Page 37
page 10……Page 38
page 11……Page 39
Compact Numerical Methods for Computers – Chapter 3 THE SINGULAR-VALUE DECOMPOSITION AND ITS USE TO SOLVE LEAST-SQUARES PROBLEMS……Page 40
page 2……Page 41
page 3……Page 42
page 4……Page 43
page 5……Page 44
page 6……Page 45
page 7……Page 46
page 8……Page 47
page 9……Page 48
page 10……Page 49
page 11……Page 50
page 12……Page 51
page 13……Page 52
page 14……Page 53
page 15……Page 54
page 16……Page 55
page 17……Page 56
page 18……Page 57
page 19……Page 58
Compact Numerical Methods for Computers – Chapter 4 HANDLING LARGER PROBLEMS……Page 59
page 2……Page 60
page 3……Page 61
page 4……Page 62
page 5……Page 63
page 6……Page 64
page 7……Page 65
page 8……Page 66
page 9……Page 67
page 10……Page 68
page 11……Page 69
page 12……Page 70
page 13……Page 71
page 14……Page 72
page 15……Page 73
page 16……Page 74
page 17……Page 75
Compact Numerical Methods for Computers – Chapter 5 SOME COMMENTS ON THE FORMATION OF THE CROSS-PRODUCTS MATRIX ATA……Page 76
page 2……Page 77
page 3……Page 78
page 4……Page 79
page 5……Page 80
page 6……Page 81
Compact Numerical Methods for Computers – Chapter 6 LINEAR EQUATIONS-A DIRECT APPROACH……Page 82
page 2……Page 83
page 3……Page 84
page 4……Page 85
page 5……Page 86
page 6……Page 87
page 7……Page 88
page 8……Page 89
page 9……Page 90
page 10……Page 91
page 11……Page 92
page 12……Page 93
Compact Numerical Methods for Computers – Chapter 7 THE CHOLESKI DECOMPOSITION……Page 94
page 2……Page 95
page 3……Page 96
page 4……Page 97
page 5……Page 98
page 6……Page 99
page 7……Page 100
page 8……Page 101
page 9……Page 102
page 10……Page 103
Compact Numerical Methods for Computers – Chapter 8 THE SYMMETRIC POSITIVE DEFINITE MATRIX AGAIN……Page 104
page 2……Page 105
page 3……Page 106
page 4……Page 107
page 5……Page 108
page 6……Page 109
page 7……Page 110
page 8……Page 111
Compact Numerical Methods for Computers – Chapter 9 THE ALGEBRAIC EIGENVALUE PROBLEM……Page 112
page 2……Page 113
page 3……Page 114
page 4……Page 115
page 5……Page 116
page 6……Page 117
page 7……Page 118
page 8……Page 119
page 9……Page 120
page 10……Page 121
page 11……Page 122
page 12……Page 123
page 13……Page 124
page 14……Page 125
page 15……Page 126
page 16……Page 127
page 17……Page 128
Compact Numerical Methods for Computers – Chapter 10 REAL SYMMETRIC MATRICES……Page 129
page 2……Page 130
page 3……Page 131
page 4……Page 132
page 5……Page 133
page 6……Page 134
page 7……Page 135
page 8……Page 136
page 9……Page 137
page 10……Page 138
page 11……Page 139
page 12……Page 140
page 13……Page 141
page 14……Page 142
page 15……Page 143
page 16……Page 144
Compact Numerical Methods for Computers – Chapter 11 THE GENERALISED SYMMETRIC MATRIX EIGENVALUE PROBLEM……Page 145
page 2……Page 146
page 3……Page 147
page 4……Page 148
page 5……Page 149
page 6……Page 150
page 7……Page 151
Compact Numerical Methods for Computers – Chapter 12 OPTIMISATION AND NONLINEAR EQUATIONS……Page 152
page 2……Page 153
page 3……Page 154
page 4……Page 155
page 5……Page 156
page 6……Page 157
Compact Numerical Methods for Computers – Chapter 13 ONE-DIMENSIONAL PROBLEMS……Page 158
page 2……Page 159
page 3……Page 160
page 4……Page 161
page 5……Page 162
page 6……Page 163
page 7……Page 164
page 8……Page 165
page 9……Page 166
page 10……Page 167
page 11……Page 168
page 12……Page 169
page 13……Page 170
page 14……Page 171
page 15……Page 172
page 16……Page 173
page 17……Page 174
page 18……Page 175
page 19……Page 176
page 20……Page 177
Compact Numerical Methods for Computers – Chapter 14 DIRECT SEARCH METHODS……Page 178
page 2……Page 179
page 3……Page 180
page 4……Page 181
page 5……Page 182
page 6……Page 183
page 7……Page 184
page 8……Page 185
page 9……Page 186
page 10……Page 187
page 11……Page 188
page 12……Page 189
page 13……Page 190
page 14……Page 191
page 15……Page 192
page 16……Page 193
page 17……Page 194
page 18……Page 195
Compact Numerical Methods for Computers – Chapter 15 DESCENT TO A MINIMUM I: VARIABLE METRIC ALGORITHMS……Page 196
page 2……Page 197
page 3……Page 198
page 4……Page 199
page 5……Page 200
page 6……Page 201
page 7……Page 202
page 8……Page 203
page 9……Page 204
page 10……Page 205
page 11……Page 206
Compact Numerical Methods for Computers – Chapter 16 DESCENT TO A MINIMUM II: CONJUGATE GRADIENTS……Page 207
page 2……Page 208
page 3……Page 209
page 4……Page 210
page 5……Page 211
page 6……Page 212
page 7……Page 213
page 8……Page 214
page 9……Page 215
page 10……Page 216
Compact Numerical Methods for Computers – Chapter 17 MINIMISING A NONLINEAR SUM OF SQUARES……Page 217
page 2……Page 218
page 3……Page 219
page 4……Page 220
page 5……Page 221
page 6……Page 222
page 7……Page 223
page 8……Page 224
page 9……Page 225
page 10……Page 226
page 11……Page 227
Compact Numerical Methods for Computers – Chapter 18 LEFT-OVERS……Page 228
page 2……Page 229
page 3……Page 230
page 4……Page 231
page 5……Page 232
page 6……Page 233
page 7……Page 234
page 8……Page 235
page 9……Page 236
page 10……Page 237
page 11……Page 238
page 12……Page 239
page 13……Page 240
page 14……Page 241
page 15……Page 242
page 16……Page 243
Compact Numerical Methods for Computers – Chapter 19 THE CONJUGATE GRADIENTS METHOD APPLIED TO PROBLEMS IN LINEAR ALGEBRA……Page 244
page 2……Page 245
page 3……Page 246
page 4……Page 247
page 5……Page 248
page 6……Page 249
page 7……Page 250
page 8……Page 251
page 9……Page 252
page 10……Page 253
page 11……Page 254
page 12……Page 255
page 13……Page 256
page 14……Page 257
page 15……Page 258
page 16……Page 259
page 17……Page 260
page 18……Page 261
page 19……Page 262
Compact Numerical Methods for Computers – Appendix 1 NINE TEST MATRICES……Page 263
page 2……Page 264
Compact Numerical Methods for Computers – Appendix 2 LIST OF ALGORITHMS……Page 265
Compact Numerical Methods for Computers – Appendix 3 LIST OF EXAMPLES……Page 266
page 2……Page 267
Compact Numerical Methods for Computers – Appendix 4 FILES ON THE SOFTWARE DISKETTE……Page 268
page 2……Page 269
page 3……Page 270
page 4……Page 271
page 5……Page 272
Compact Numerical Methods for Computers – Bibliography……Page 273
page 2……Page 274
page 3……Page 275
page 4……Page 276
page 5……Page 277
page 6……Page 278
page 7……Page 279
page 8……Page 280
Compact Numerical Methods for Computers – Index……Page 281
page 2……Page 282
page 3……Page 283
page 4……Page 284
page 5……Page 285
page 6……Page 286
page 7……Page 287
page 8……Page 288
Reviews
There are no reviews yet.