Javier Alvarez-Benedi, Rafael Munoz-Carpena9781566706575, 1-5667-0657-2
Soil-Water-Solute Process Characterization goes beyond technical guidance and addresses the complicating factors such as spatial and temporal variability of soil processes, scale issues, soil structure, and the trade-offs between methods. It focuses on advanced methods for the monitoring and modeling of mass transfer processes in soil. Expert contributors present limitations to well-known methods and alternatives, discussing their practical applications for characterization efforts, evaluating strengths and weaknesses, and focusing on a reduced set of selected techniques. Three in-depth sections cover everything from multidisciplinary approaches for assessing subsurface non-point source pollution to techniques for characterizing water and energy balances at the soil-plant-atmosphere interface, field methods for monitoring soil water status, and computer models for characterizing the effect of chemicals in soil.
This single-source reference is transforming method selection and our understanding of the principles, advantages, and limitations of the available monitoring techniques. Written in a simple and straightforward manner, Soil-Water-Solute Process Characterization is a detailed cookbook and a useful, practical reference for students, practitioners, and researchers.
Table of contents :
1566706572……Page 1
Table of Contents……Page 20
Preface……Page 6
Editors……Page 12
Contributors……Page 14
CONTENTS……Page 38
1.1 INTRODUCTION……Page 39
1.1.1 DEFINITION AND CHARACTERISTICS OF NPS POLLUTION……Page 40
1.1.2.1 The Issue of Health……Page 41
1.1.2.2 Global Scope and Significance……Page 42
1.1.2.3 Common NPS Pollutants……Page 45
1.1.3 JUSTIFICATION FOR ASSESSING NPS POLLUTION IN SOIL……Page 46
1.2 MULTIDISCIPLINARY APPROACH FOR ASSESSING SUBSURFACE NPS POLLUTANTS……Page 48
1.2.1 DETERMINISTIC MODELING PROCESS……Page 50
1.2.1.1 Model Conceptualization……Page 51
1.2.1.2 Model Parameters……Page 52
1.2.1.4 Sensitivity Analysis……Page 53
1.2.1.5 Calibration……Page 55
1.2.1.6 Validation……Page 56
1.2.1.7 Simulation and Uncertainty Analysis……Page 58
1.2.2.1 Scale……Page 60
1.2.2.2 Spatial Variability and Structure……Page 62
1.2.3 MODELING NPS POLLUTANTS IN SOIL……Page 67
1.2.3.1 Data……Page 68
1.2.3.2 GIS……Page 71
1.2.3.3 Models……Page 73
1.2.4 ROLE OF GEOSTATISTICS AND FUZZY SET THEORY……Page 76
1.3.1 SAN JOAQUIN VALLEY GROUNDWATER VULNERABILITY STUDY……Page 79
REFERENCES……Page 83
CONTENTS……Page 96
2.1.1 NEED FOR FIELD STUDIES……Page 97
2.1.2 PRELIMINARY ISSUES……Page 98
2.1.2.2 Stochasticity in Soil Processes……Page 100
2.2 ON SPATIAL VARIABILITY……Page 101
2.3. ON TEMPORAL VARIABILITY……Page 104
2.4.1 ISSUES OF SCALE……Page 106
2.4.2 CHARACTERIZING SCALE OF STUDY……Page 108
2.4.3 IRRIGATION, SOLUTE DELIVERY, AND THREE-DIMENSIONAL FLOW……Page 110
2.5 SUMMARY AND CONCLUSIONS……Page 112
APPENDIX 1: BREAKTHROUGH CURVE DATA ANALYSIS……Page 116
REFERENCES……Page 117
CONTENTS……Page 124
3.1 INTRODUCTION……Page 125
3.2 GENERAL CONCEPTUALIZATION OF SOIL PROCESSES……Page 127
3.2.1 INSTANTANEOUS EQUILIBRIUM……Page 128
3.2.2 IRREVERSIBLE KINETICS……Page 129
3.2.3 REVERSIBLE KINETICS……Page 131
3.2.4 TRANSPORT……Page 132
3.3.1 CLASSICAL DESCRIPTION OF WATER MOVEMENT……Page 133
3.3.2 CHARACTERIZATION OF WATER CONTENT-PRESSURE HEAD AND HYDRAULIC CONDUCTIVITY-PRESSURE HEAD RELATIONSHIPS……Page 135
3.3.3 DUAL POROSITY MODELS……Page 137
3.4.1 CLASSICAL DESCRIPTION OF SOLUTE MOVEMENT……Page 138
3.4.2 NONEQUILIBRIUM MODELS……Page 139
3.4.3 SOLUTE DISPERSION……Page 141
3.4.4 SORPTION……Page 144
3.4.5 VOLATILIZATION AND GAS SOLUBILITY……Page 146
3.4.6 TRANSFORMATION……Page 148
3.5.1 BUILDING SOIL PROCESS MODEL……Page 150
ACKNOWLEDGMENTS……Page 152
GREEK……Page 153
REFERENCES……Page 154
CONTENTS……Page 160
4.1 THE COMPONENTS OF WATER AND ENERGY BALANCES: DESCRIPTION AND NATURE OF PROCESSES……Page 161
4.1.1 DESCRIPTION AND NATURE OF PROCESSES AND ASSOCIATED UNCERTAINTY……Page 162
4.1.2 DIFFERENT APPROACHES AND SPATIOTEMPORAL SCALES……Page 164
4.1.3 REMOTE SENSING: POTENTIAL AS A GLOBAL DATA SOURCE……Page 165
4.2.1.1 A Simple Water and Energy Balance Model: The Interaction Between Land and Atmosphere……Page 166
4.2.1.2 The Force Restore Approach……Page 168
4.2.1.3 Dynamics of Soil Moisture Using a Simple Water Balance……Page 169
4.2.1.4 Exploration of Optimal Conditions for Vegetation Through a Water Balance Model……Page 170
4.2.1.5 Strengths and Weaknesses……Page 173
4.2.2 INTERACTION OF MODEL DEVELOPMENT AND TEMPORAL AND SPATIAL SCALES……Page 174
4.2.3 Hydrologic Data Assimilation……Page 175
4.3.1 INTERCEPTION……Page 177
4.3.1.2 Strengths and Weaknesses……Page 178
4.3.2.1 Conservation of Mass Approach……Page 179
4.3.2.2 Conservation of Energy Approach……Page 181
4.3.2.3 Plant Physiology……Page 183
4.3.2.5 Strengths and Weaknesses……Page 184
4.3.3 RECHARGE AND TEMPORAL SOIL WATER CONTENT VARIATIONS……Page 185
4.4 THE REMOTE SENSING PERSPECTIVE……Page 187
4.4.1.1 VIS-NIR……Page 188
4.4.1.2 Thermal Infrared……Page 189
4.4.1.3 Microwave……Page 190
4.4.1.4 Strengths and Weaknesses……Page 191
NOTATION……Page 192
REFERENCES……Page 195
CONTENTS……Page 204
5.1 INTRODUCTION……Page 205
5.2.1.1 Neutron Moderation……Page 207
5.2.1.2 Dielectric Methods……Page 209
5.2.1.3 Other Volumetric Field Methods……Page 216
5.2.2.1 Tensiometer……Page 218
5.2.2.2 Resistance Blocks……Page 219
5.2.2.3 Heat Dissipation……Page 222
5.2.2.4 Soil Psychrometer……Page 223
5.3 RECOMMENDATIONS AND FUTURE RESEARCH……Page 225
REFERENCES……Page 230
CONTENTS……Page 234
6.1 INTRODUCTION……Page 235
6.2 PRINCIPLES OF SOIL WATER FLOW AND PARAMETER DEFINITIONS……Page 236
6.3 FIELD METHODS FOR IN SITU MEASUREMENT OF SOIL HYDRAULIC PROPERTIES……Page 240
6.3.1.1 Ring Infiltration Theory……Page 241
6.3.1.2 Single-Ring and Double-Ring Infiltrometer Methods……Page 244
6.3.1.3 Twin-Ring and Multiple-Ring Infiltrometer Methods……Page 250
6.3.1.4 Generalized Steady Flow Analysis for Ring Infiltrometers……Page 252
6.3.1.6 Strengths and Weaknesses of Ring Infiltrometer Methods……Page 253
6.3.2 WELL OR BOREHOLE PERMEAMETERS……Page 254
6.3.2.1 Well Permeameter Flow Theory……Page 257
6.3.2.2 Original Well Permeameter Analysis……Page 258
6.3.2.3 Updated Well Permeameter Analyses……Page 259
6.3.2.4 Strengths and Weaknesses of Well Permeameter Methods……Page 263
6.3.3 TENSION OR DISC INFILTROMETERS……Page 264
6.3.3.1 Tension Infiltrometer Flow Theory……Page 265
6.3.3.2 Steady Flow – Multiple Head Tension Infiltrometer Analyses……Page 269
6.3.3.3 Transient Flow – Single Head Tension Infiltrometer Analysis……Page 273
6.3.3.4 Accounting for Contact Sand……Page 275
6.3.3.5 Strengths and Weaknesses of the Tension Infiltrometer Method……Page 277
6.3.4.1 Instantaneous Profile Method……Page 279
6.3.4.2 Strengths and Weaknesses of the Instantaneous Profile Method……Page 282
6.4 RECOMMENDATIONS FOR FURTHER RESEARCH……Page 283
REFERENCES……Page 284
CONTENTS……Page 290
7.1 INTRODUCTION……Page 291
7.2.1 MEASUREMENT PRINCIPLE: THE BEHAVIOR OF SPINS IN MAGNETIC FIELDS……Page 292
7.2.2.1 Pulse Sequence Design……Page 296
7.2.2.2 Key Hardware Components……Page 303
7.2.3 APPLICATIONS OF NMRI TO SOIL-PLANT-WATER PROCESSES……Page 305
7.2.4.2 Weaknesses……Page 308
7.3.1 MEASUREMENT PRINCIPLE: ATTENUATION OF X-RAY PHOTON ENERGY……Page 309
7.3.2 MEASUREMENT COMPONENTS……Page 310
7.3.3.1 Interpretation of Attenuation Coefficients……Page 311
7.3.3.2 Image Reconstruction……Page 315
7.3.4 APPLICATIONS OF X-RAY TOMOGRAPHY TO SOIL-PLANT-WATER PROCESSES……Page 316
7.3.5.1 Strengths……Page 318
7.4. USE OF NMRI AND X-RAY TOMOGRAPHY FOR PRACTICAL ENGINEERING PURPOSES……Page 319
7.5.2 MACROSCALE……Page 320
REFERENCES……Page 321
CONTENTS……Page 326
8.1 INTRODUCTION……Page 327
8.2 BACKGROUND ON PREFERENTIAL FLOW PROCESSES AND IDENTIFICATION……Page 328
8.3.1 EXPERIMENTAL……Page 330
8.3.2 THEORETICAL……Page 332
8.3.2.1 Mechanistic, Single-Domain, Derived Stochastically (Averaging) with Deterministic Result……Page 333
8.3.2.2 Empirical Single-Domain, Deterministic……Page 334
8.3.2.3 Mechanistic, Bidomain and Multidomain, Deterministic……Page 335
8.3.2.5 A New Three-Domain Infiltration Concept for Structured Soils……Page 337
8.4 SUMMARY AND CONCLUSIONS……Page 340
REFERENCES……Page 341
CONTENTS……Page 346
9.2.1.1 Suction Cups……Page 347
9.2.1.2 Combined Solution Sampling – Tensiometer Probes……Page 351
9.2.1.3 Suction Lysimeters……Page 353
9.2.1.4 Passive Capillary Samplers……Page 354
9.2.1.5 Capillary Absorbers……Page 356
9.3.1 TIME DOMAIN REFLECTOMETRY……Page 358
9.3.2 ELECTRICAL RESISTIVITY METHODS……Page 363
9.3.3 ELECTROMAGNETIC INDUCTION……Page 366
9.3.4 POROUS MATRIX SENSORS……Page 369
9.3.5 FIBER OPTIC SENSORS……Page 372
9.4 COMPARISON OF DIRECT AND INDIRECT METHODS……Page 373
9.5.1 DETAILED CHARACTERIZATION OF SOLUTE TRANSPORT IN A HETEROGENEOUS FIELD SOIL WITH FIBER OPTIC MINI PROBES AND TIME DOMAIN REFLECTOMETRY……Page 374
9.5.2 MONITORING SNOWMELT-INDUCED UNSATURATED FLOW AND TRANSPORT USING ELECTRICAL RESISTIVITY TOMOGRAPHY AND SUCTION SAMPLERS……Page 379
FUTURE RESEARCH……Page 382
NOTATION……Page 383
REFERENCES……Page 384
CONTENTS……Page 394
10.1 INTRODUCTION……Page 395
10.2.2 TDR OPERATION……Page 396
10.2.3 EXPERIMENTAL SETUP FOR LABORATORY EXPERIMENTS……Page 398
10.2.4 PROBE DESIGN AND PLACEMENT……Page 399
10.2.5.1 Soil Moisture Content……Page 401
10.2.5.2 Solute Concentration……Page 402
10.2.6.1 Direct Calibration Approach……Page 405
10.2.6.2 Indirect Calibration Approach……Page 409
10.2.7 TRANSPORT MODELS LINKED TO TDR MEASUREMENTS……Page 411
10.2.8 STRENGTH AND WEAKNESS OF TDR FOR SOLUTE TRANSPORT STUDIES……Page 413
10.3.1 STEADY-STATE WATER FLOW AND INERT SOLUTES……Page 414
10.3.2 TRANSIENT FLOW AND INERT SOLUTES……Page 418
10.3.3 REACTIVE SOLUTES……Page 419
10.4. RECOMMENDATIONS AND FUTURE RESEARCH……Page 421
NOTATION ROMAN……Page 422
REFERENCES……Page 423
CONTENTS……Page 428
11.1 CHARACTERIZATION OF SOLUTE TRANSPORT……Page 429
11.2.1 THE MISCIBLE DISPLACEMENT EXPERIMENT AND ITS MATHEMATICAL DESCRIPTION……Page 432
11.2.1.1 Flux, Resident, and Time-Averaged Concentrations……Page 434
11.2.1.2 Boundary Conditions……Page 437
11.2.1.3 Tracers……Page 440
11.2.2.1 The Effect of Transport Mechanisms on the BTC……Page 441
11.2.2.2 Moment Analysis……Page 443
11.2.2.3 Characterizing Transport Mechanisms Through Inverse Modeling……Page 445
11.2.2.4 Application for Sorbed Solutes: The Estimation of the Retardation Factor……Page 447
11.2.3 BEYOND THE BTC……Page 449
11.3.1 TECHNIQUES BASED ON BREAKTHROUGH CURVES……Page 451
11.3.1.1 Effect of Variation of the Pore Water Velocity……Page 453
11.3.1.3 The Flow-Interruption Technique……Page 454
11.3.2 ESTIMATION OF NONEQUILIBRIUM PARAMETERS FROM SIMPLE EXPERIMENTS……Page 460
11.3.2.1 Single Tracer……Page 461
11.3.2.2 Sequential Tracer Technique……Page 462
11.4 RECOMMENDATIONS AND FUTURE RESEARCH……Page 463
ACKNOWLEDGMENTS……Page 464
REFERENCES……Page 465
CONTENTS……Page 472
12.1 INTRODUCTION……Page 473
12.2 SORPTION AND OTHER SOIL PROCESSES……Page 475
12.2.1 SORPTION-LEACHING……Page 476
12.2.2 SORPTION-DEGRADATION……Page 479
12.3.1.1 Sorption Equilibrium……Page 480
12.3.1.2 Desorption……Page 481
12.3.1.3 Sorption Kinetics……Page 483
12.3.2.1 Characterizing Sorption at Field Scale……Page 487
12.3.2.2 Estimating Sorption from Easily Measurable Soil Properties……Page 489
12.4 RECOMMENDATIONS AND FUTURE RESEARCH……Page 492
REFERENCES……Page 493
CONTENTS……Page 502
13.1 INTRODUCTION……Page 503
13.2 SOIL MASS BALANCE APPROACH……Page 504
13.3.1.1 Soil and Air Temperature and Humidity……Page 505
13.3.1.2 Chamber Headspace Gas Concentration……Page 506
13.3.2 CHAMBER DESIGN……Page 507
13.3.3 AIR SAMPLING AND GAS CONCENTRATION ANALYSIS……Page 508
13.3.4 CHAMBER TYPES……Page 509
13.3.4.1 Steady-State Chambers……Page 510
13.3.4.2 Non-Steady-State Chambers……Page 513
13.4. MASS EXCHANGE USING MICROMETEOROLOGICAL TECHNIQUES……Page 516
13.4.1. AERODYNAMIC TECHNIQUE……Page 517
13.4.2 BOWEN RATIO-ENERGY BALANCE TECHNIQUE……Page 519
13.4.3 EDDY COVARIANCE TECHNIQUE……Page 522
13.4.4 RELAXED EDDY ACCUMULATION TECHNIQUE……Page 523
13.4.6 INTEGRATED HORIZONTAL FLUX TECHNIQUE……Page 524
13.4.8 THEORETICAL PROFILE SHAPE TECHNIQUE……Page 526
13.4.9 BACKWARD LAGRANGIAN STOCHASTIC TECHNIQUE……Page 528
13.5. RECOMMENDATIONS AND FUTURE RESEARCH……Page 529
NOTATION……Page 531
REFERENCES……Page 533
CONTENTS……Page 540
14.1 INTRODUCTION……Page 542
14.1.1.1 Using Standard Methods……Page 543
14.1.1.3 Meeting the Method Detection Limit……Page 544
14.1.2 ASSESSMENT OF UNCERTAINTY……Page 553
14.2.1.1 Nitrogen in Soil and Water……Page 554
14.2.1.2 Laboratory Methods for Ammonia Determination……Page 555
14.2.1.4 Laboratory Methods for Nitrate and Nitrite Determination……Page 558
14.2.1.6 Organic N Determination……Page 564
14.2.2.1 Phosphorus in Soil and Water……Page 566
14.2.2.2 Laboratory Methods for Phosphorus Determination……Page 570
14.2.2.3 In Situ Methods for Phosphorus Determination……Page 574
14.2.3.1 Metals in Soil and Water……Page 575
14.2.3.3 In Situ Method for Metal Determination……Page 576
14.2.4.2 Organic Carbon Determination……Page 577
14.2.5.2 Sample Preparation……Page 580
14.2.5.3 General Approach for Screening Pesticides in Soil and Water……Page 581
14.2.5.4 Laboratory Methods for Pesticide Determination……Page 582
14.3 RECOMMENDATIONS AND FUTURE TRENDS……Page 586
ACKNOWLEDGMENTS……Page 587
REFERENCES……Page 588
15.1 INTRODUCTION……Page 596
15.2 BASIC SOIL MICROBIOLOGY……Page 597
15.2.1.2 Diversity……Page 598
15.2.2 SOIL AS A MICROBIAL HABITAT……Page 599
15.3.1 SAMPLING AND SOIL HANDLING……Page 601
15.3.2 SOIL RESPIRATION, DENITRIFICATION, AND NITRIFICATION……Page 603
15.3.3 ACTIVITY……Page 604
15.3.4 DIVERSITY……Page 606
15.3.5 ENUMERATION AND BIOMASS……Page 608
15.3.6 CHOICE OF METHOD……Page 610
15.4.1 TOXICITY TESTING……Page 612
15.4.3 VARIATION……Page 613
15.5.2 FUTURE RESEARCH……Page 616
REFERENCES……Page 617
CONTENTS……Page 622
16.1 INTRODUCTION – WHY GEOSTATISTICS?……Page 623
16.2.1 THEORETICAL CONCEPTS……Page 624
16.2.1.2 Second-Order Stationarity……Page 625
16.2.2 VARIOGRAM ESTIMATION……Page 626
16.2.3 MODELS FOR VARIOGRAMS……Page 627
16.2.4.1 Univariate Estimation of Z……Page 628
16.2.4.2 Multivariate Estimation of Z……Page 629
16.2.4.3 Strongly Skewed Distributions……Page 633
16.2.4.4 Local Spatial Uncertainty……Page 634
16.2.4.5 Conditional Simulation……Page 640
16.3.2 NUMBER OF SAMPLES……Page 642
16.3.3 SAMPLING CONFIGURATION AND SAMPLING GOAL……Page 643
16.3.5 SECONDARY INFORMATION……Page 644
16.4.2 MATERIALS AND METHODS……Page 645
16.4.3 RESULTS……Page 646
REFERENCES……Page 651
17.1 INTRODUCTION……Page 654
17.2 FRACTAL MODELS AND PARAMETERS OF SPATIAL VARIABILITY……Page 656
17.2.1 MONOFRACTAL MODELS……Page 657
17.2.2 MULTIFRACTAL MODELS……Page 663
17.2.3 MULTIFRACTAL SPECTRA……Page 664
17.3 SIMULATING SPATIAL VARIABILITY WITH FRACTAL MODELS……Page 669
17.4 SUMMARY, CRITICAL ASSESSMENT, AND FUTURE RESEARCH……Page 671
REFERENCES……Page 672
CONTENTS……Page 676
18.1.1 JUSTIFICATION FOR CHARACTERIZING SPATIAL VARIABILITY WITH GEOSPATIAL ECa MEASUREMENTS……Page 677
18.1.2 EDAPHIC FACTORS INFLUENCING ECa MEASUREMENTS……Page 679
18.1.3 MOBILE ECa MEASUREMENT EQUIPMENT……Page 681
18.2 GUIDELINES FOR CONDUCTING AN ECa-DIRECTED SOIL SAMPLING SURVEY……Page 683
18.3 STRENGTHS AND LIMITATIONS……Page 684
18.4 CHARACTERIZING SPATIAL VARIABILITY WITH ECa- DIRECTED SOIL SAMPLING: CASE STUDIES……Page 687
18.4.1 LANDSCAPE-SCALE SOLUTE TRANSPORT IN THE VADOSE ZONE……Page 689
18.4.2 ASSESSING SOIL QUALITY AND SPATIO-TEMPORAL CHANGES IN SOIL QUALITY……Page 695
18.4.3 DELINEATING SITE-SPECIFIC MANAGEMENT UNITS FOR PRECISON AGRICULTURE……Page 697
18.5 FUTURE DIRECTIONS……Page 699
REFERENCES……Page 701
CONTENTS……Page 710
19.1 INTRODUCTION……Page 711
19.2.1 GENERAL……Page 713
19.2.2.2 Determination of Number of Simulations……Page 714
19.2.2.3 Mapping……Page 716
19.2.3.1 General……Page 717
19.2.3.2 Proposed Protocol……Page 718
19.3.1 SPATIALIZATION OF 1D MODELS……Page 722
19.3.2 PROBABILITY ANALYSIS OF UNVERTAINTY LINKED TO DETERMINISTIC SIMULATIONS……Page 724
19.4 RECOMMENDATIONS AND FUTURE RESEARCH……Page 725
REFERENCES……Page 727
CONTENTS……Page 730
20.1 INTRODUCTION……Page 731
20.2 THE FORWARD MODEL……Page 732
20.2.2 IDENTIFIABILITY, UNIQUENESS, AND SENSITIVITY……Page 733
20.3.1 DEFINITIO……Page 734
20.3.2 MULTI-INFORMATIVE OBJECTIVE FUNCTIONS……Page 736
20.3.2.2 Use of Different Sources of Information……Page 737
20.4 OPTIMIZATION ALGORITHMS……Page 738
20.5.1 RESPONSE SURFACE ANALYSIS……Page 740
20.5.3 UNCERTAINTY ANALYSIS……Page 743
20.5.4 STABILITY ANALYSIS……Page 744
REFERENCES……Page 746
CONTENTS……Page 752
21.1. INTRODUCTION: STATE OF THE ART ON THE USE OF PESTICIDE LEACHING AND DISSIPATION MODELS……Page 753
21.1.1.1 Purpose of the Model……Page 754
21.1.1.3 Scale……Page 755
21.1.1.4 Construction of the Model……Page 756
21.1.1.6 Model Outputs……Page 763
21.1.1.8 Reliability……Page 764
21.1.2 CORRECT USE OF MODELS……Page 765
21.1.5 PARAMETERIZATION……Page 766
21.2.1 THE ENVIRONMENTAL FATE OF PESTICIDES APPLIED ON AGRICULTURAL FIELDS……Page 767
21.2.2.1 Soil Properties……Page 768
21.2.2.2 Soil Hydrology……Page 769
21.2.2.3 Pesticide Properties……Page 770
21.2.2.4 Pesticide-Soil Processes……Page 771
21.3.1 GENERAL STRUCTURE OF MATHEMATICAL PESTICIDE LEACHING MODELS……Page 772
21.3.2 CURRENT LEACHING MODES……Page 775
21.3.3 APPLICATIONS……Page 776
21.3.3.1 Research……Page 777
21.3.3.2 Environmental Management……Page 779
21.3.3.3 Farm Management……Page 780
21.3.3.4 Large-Scale Vulnerability Assessment……Page 781
21.3.3.5 Pesticide Registration……Page 782
21.4.1 PESTICIDES IN ITALIAN HORTICULTURE: POTENTIAL OF GROUNDWATER CONTAMINATION AND CARRYOVER EFFECTS……Page 784
21.4.2 SUSAP DECISION SUPPORT SYSTEM FOR THE REGION OF LOMARDY, ITALY……Page 785
21.4.3 FOCUS……Page 786
REFERENCES……Page 788
A……Page 794
C……Page 795
D……Page 796
E……Page 797
F……Page 798
G……Page 799
H……Page 800
I……Page 801
M……Page 802
N……Page 805
P……Page 806
R……Page 808
S……Page 809
T……Page 813
V……Page 814
Z……Page 815
Back cover……Page 816
Reviews
There are no reviews yet.