Vladimir Fortov, Igor Iakubov, Alexey Khrapak0199299803, 9780199299805, 9781429489997
Table of contents :
Preface……Page 6
Contents……Page 10
1.1.2 Coulomb interaction. Nonideality parameter……Page 16
1.1.3 Electron–atom and ion–atom interactions……Page 20
1.1.4 Compound particles in plasma……Page 22
1.2.1 Two–component plasma……Page 23
1.2.2 Metal plasma……Page 25
1.2.3 Plasma of hydrogen and inert gases……Page 28
1.2.4 Plasma with multiply charged ions……Page 29
1.2.6 Nonneutral plasmas……Page 31
1.3 Nonideal plasma in nature. Scientific and technical applications……Page 32
References……Page 37
2.1 Plasma heating in furnaces……Page 41
2.1.1 Measurement of electrical conductivity and thermoelectromotive force……Page 42
2.1.2 Optical absorption measurements…….Page 51
2.1.3 Density measurements…….Page 55
2.1.4 Sound velocity measurements……Page 57
2.2.1 Isobaric heating in a capillary……Page 58
2.2.2 Exploding wire method……Page 62
2.3 High–pressure electric discharges……Page 68
References……Page 74
3 Dynamic methods in the physics of nonideal plasma……Page 80
3.1 The principles of dynamic generation and diagnostics of plasma……Page 81
3.2 Dynamic compression of the cesium plasma……Page 88
3.3 Compression of inert gases by powerful shock waves……Page 91
3.4 Isentropic expansion of shock–compressed metals……Page 104
3.5 Generation of superdense plasma in shock waves……Page 119
3.6 Nonideal plasma generation by powerful fluxes of energy……Page 124
References……Page 133
4.1.2 Three–component electron–ion–atomic plasma……Page 140
4.1.3 Second virial coefficient and partition function of atom……Page 142
4.2 Anomalous properties of a metal plasma……Page 143
4.2.1 Physical properties of metal plasma……Page 144
4.2.2 Lowering of the ionization potential……Page 146
4.2.3 Charged clusters……Page 147
4.2.4 Thermodynamics of multiparticle clusters……Page 149
4.2.5 “Vapor–liquid” phase transition and metallization……Page 151
4.3.1 Interaction between charged particles and neutrals……Page 154
4.3.2 Molecular and cluster ions……Page 157
4.3.3 Ionization equilibrium in alkali metal plasma……Page 161
4.4.1 Droplet model of nonideal plasma……Page 163
4.4.2 Ionization equilibrium……Page 166
4.4.3 Calculation of the plasma composition……Page 169
4.5.1 Mott’s transition……Page 171
4.5.2 Quasi–atomic model……Page 173
4.5.3 Phase transition in metals……Page 174
References……Page 179
5.1.1 Monte Carlo method……Page 184
5.1.2 Results of calculation……Page 186
5.1.3 Ion–sphere and hard–sphere models for OCP……Page 189
5.1.4 Wigner crystallization……Page 190
5.1.5 Integral equations……Page 192
5.1.6 Polarization of compensating background……Page 193
5.1.8 Sum rules……Page 194
5.1.9 Asymptotic expressions……Page 195
5.1.10 OCP ion mixture……Page 199
5.2 Multicomponent plasma. Results of the perturbation theory……Page 200
5.3 Pseudopotential models. Monte Carlo calculations……Page 205
5.3.1 Choice of pseudopotential……Page 207
5.4 Bound state contribution. Confined atom model……Page 212
5.5 Quasiclassical approximation……Page 218
5.6 Density functional method……Page 222
5.7 Quantum Monte Carlo method……Page 225
5.8 Comparison with experiments……Page 232
5.9 On phase transitions in nonideal plasmas……Page 244
References……Page 252
6.1.1 Electrical conductivity of weakly ionized plasma……Page 263
6.1.2 Electrical conductivity of strongly ionized plasma……Page 266
6.2 Electrical conductivity of weakly nonideal plasma……Page 270
6.3.1 The density of electron states……Page 277
6.3.2 Electron mobility and electrical conductivity……Page 281
6.4 The thermoelectric coefficient……Page 283
References……Page 288
7.1 Kinetic equations and the results of asymptotic theories……Page 291
7.2 Electrical conductivity measurement results……Page 294
7.3 The results of calculations of the coefficient of electrical conductivity……Page 298
7.4 The coefficient of electrical conductivity of a strongly nonideal “cold plasma”……Page 303
7.5 Electrical conductivity of high–temperature nonideal plasma. The ion core effect……Page 306
References……Page 309
8.1 Optical properties……Page 313
8.2 Basic radiation processes in rarefied atomic plasma……Page 314
8.3 The effect of weak nonideality: Spectral line broadening and shift; Phototonization threshold shift……Page 320
8.4 The microfield distribution function in nonideal plasma……Page 325
8.5 The principle of spectroscopic stability……Page 328
8.6 Continuous spectra of strongly nonideal plasma……Page 331
8.7 The optical properties of low–temperature metal plasma……Page 337
References……Page 343
9 Metallization of nonideal plasmas……Page 348
9.1.1 Planar geometry……Page 350
9.1.2 Cylindrical geometry……Page 354
9.1.3 Light–gas guns……Page 355
9.2 Measurements of the electrical conductivity. Model of pressure–induced ionization…….Page 357
9.3 Metallization of dielectrics……Page 361
9.3.1 Hydrogen……Page 364
9.3.2 Inert gases……Page 368
9.3.3 Oxygen……Page 371
9.3.4 Sulfur……Page 373
9.3.5 Fullerene……Page 375
9.3.6 Water……Page 376
9.3.7 Dielectrization of metals……Page 378
9.4 Ionization by pressure……Page 380
References……Page 382
10.1.1 Electrons on a surface of liquid He……Page 391
10.1.2 Penning trap……Page 393
10.1.3 Linear Paul trap……Page 396
10.1.4 Storage ring……Page 397
10.2 Strong coupling and Wigner crystallization……Page 399
10.3 Melting of mesoscopic crystals……Page 407
10.4 Coulomb clusters……Page 410
References……Page 413
11.1 Introduction……Page 417
11.2.1 Charging of dust particles in plasmas (theory)……Page 421
11.2.2 Electrostatic potential around a dust particle……Page 437
11.2.3 Main forces acting on dust particles in plasmas……Page 441
11.2.4 Interaction between dust particles in plasmas……Page 450
11.2.5 Experimental determination of the interaction potential……Page 452
11.2.6 Formation and growth of dust particles……Page 454
11.3.1 Theoretical approaches……Page 455
11.3.2 Experimental investigation of phase transitions in dusty plasmas……Page 462
11.3.3 Dust clusters in plasmas……Page 474
11.4.1 Oscillations of individual particles in a sheath region of gas discharges……Page 476
11.4.2 Linear waves and instabilities in weakly coupled dusty plasmas……Page 481
11.4.3 Waves in strongly coupled dusty plasmas……Page 490
11.4.4 Experimental investigation of wave phenomena in dusty plasmas……Page 493
11.5.1 Investigations of dusty plasmas under microgravity conditions……Page 497
11.5.2 External perturbations……Page 503
11.5.3 Dusty plasma of strongly asymmetric particles……Page 505
11.5.5 Possible applications of dusty plasmas……Page 508
11.6 Conclusions……Page 510
References……Page 511
A: Critical parameters of metals……Page 530
B: Transport cross–sections of electron scattering by rare gas atoms……Page 532
C: The electron work function for metals……Page 533
Q……Page 534
Z……Page 535
Reviews
There are no reviews yet.