Table of contents :
two_dimens_gc_drug_doping_2003.pdf……Page 0
Before the injection-modern methods of sample preparation for separation techniques……Page 15
Introduction……Page 16
Sample preparation 100 years ago……Page 17
Unification……Page 18
Analytes in solid samples……Page 19
Microwave and sonic wave assisted extraction……Page 20
Supercritical fluid extraction……Page 21
Biological matrices and matrix solid-phase dispersion……Page 22
Analytes in solution……Page 23
Solid-phase extraction……Page 24
Solid-phase microextraction……Page 25
Stir-bar extractions……Page 26
Membrane extraction……Page 28
Purge and trap……Page 29
Headspace analysis……Page 30
Large volume injections in GC……Page 31
Coupled column systems LC-LC or GC-GC……Page 32
Affinity methods……Page 33
Restricted-access media……Page 34
Derivatisation to enhance detection……Page 35
References……Page 36
Introduction……Page 925
Approaching the optimum mobile-phase velocity……Page 926
Progress in rotation planar chromatography (RPC)……Page 929
Progress in overpressured-layer chromatography (OPLC)……Page 932
Progress in electro-planar chromatography (EPC)……Page 934
Progress in detection methods……Page 935
Comparison of the methods and conclusions……Page 936
References……Page 938
Thin-layer chromatography: challenges and opportunities……Page 903
Effective use of thin-layer chromatography……Page 904
Kinetic limitations……Page 905
Overpressured layer chromatography……Page 906
Planar electrochromatography……Page 909
Image analysis……Page 910
Two-dimensional separations……Page 911
Coupled column-layer separations……Page 913
Liquid chromatography-thin-layer chromatography (LC-TLC)……Page 914
Mass spectrometry……Page 915
Biomonitoring……Page 916
Biopartitioning……Page 918
Conclusions……Page 920
References……Page 922
On-line preconcentration strategies for trace analysis of metabolites by capillary electroph……Page 885
Introduction……Page 886
Focusing selectivity and focusing efficiency applicable to biological samples……Page 887
Dynamic pH junction: single buffer type for weakly ionic metabolites……Page 889
Dynamic pH junction: mixed buffer type for weakly ionic metabolites……Page 892
Sweeping: ionic and hydrophobic metabolites……Page 893
Dynamic pH junction-sweeping: weakly ionic and hydrophobic analytes……Page 896
High-throughput and sensitive separation formats for metabolomics……Page 897
Future prospects for on-line preconcentration of metabolites by CE……Page 899
Conclusion……Page 900
References……Page 901
Introduction……Page 860
Resolutions aided by an electrical field: chromatography or electrophoresis?……Page 861
Capillary electrophoresis (CE)……Page 863
Micellar electrokinetic chromatography (MEKC)……Page 867
Capillary electrochromatography (CEC)……Page 869
Enantiomeric separations on chiral stationary phases (CSP)……Page 870
Chiral coated phases (CCP) in ligand exchange chromatography……Page 874
Chiral mobile phase (CMP)-type separations……Page 879
Enantioselective ligand exchange in liquid-liquid partitioning systems……Page 880
Conclusion……Page 881
References……Page 882
The potential of organic (electrospray- and atmospheric pressure chemical ionisation) mass……Page 811
Introduction……Page 812
Discussion of atmospheric pressure ionisation techniques……Page 814
Electrospray ionisation……Page 815
Collision-induced dissociation and gas phase chemistry……Page 816
Quantitative aspects……Page 817
Coupling of separation techniques with APCI- and ESI-MS……Page 818
Fundamental speciation studies with ESI-MS with direct sample introduction……Page 819
Speciation of arsenic by API-MS……Page 820
Speciation of selenium by API-MS……Page 836
Speciation of lead and tin species by API-MS……Page 841
Analysis of metalloproteins by LC-ESI-MS……Page 844
Metallothioneins……Page 847
Phytochelatins……Page 848
Interaction of metals and proteins……Page 849
Conclusion……Page 852
Acknowledgements……Page 854
References……Page 855
Hyphenation of capillary separations with nuclear magnetic resonance spectroscopy……Page 789
NMR spectroscopy……Page 790
The NMR probe……Page 791
Hyphenation of capillary separation-NMR……Page 792
Capillary LC-NMR……Page 793
Capillary LC-NMR instrumentation……Page 794
On-flow……Page 795
Direct stopped-flow……Page 796
Applications of cLC-NMR……Page 797
CE-NMR instrumentation and experimental aspects……Page 799
Electrophoresis effects on NMR spectral properties……Page 800
Applications of CE-NMR……Page 803
Capillary electrochromatography (CEC)-NMR……Page 805
Applications of CEC-NMR……Page 806
Conclusions and future of capillary separation-NMR……Page 808
References……Page 809
Silica gel-based monoliths prepared by the sol-gel method: Facts and figures……Page 771
Organic polymers……Page 772
Silica based monoliths……Page 773
Starting material……Page 774
Sol preparation and hydrolysis……Page 775
Additives……Page 777
Drying……Page 778
Monolith information……Page 780
Particulate-alkoxide gels……Page 781
Performances……Page 782
References……Page 785
Determination of the interconversion energy barrier of enantiomers by separation methods……Page 749
Interconversion of enantiomers in static systems……Page 750
Combination of chiral separation with classical batchwise kinetic methods……Page 751
Enantioselective stopped-flow methods……Page 752
Stop-flow interconversion in a column series operated under multidimensional conditions……Page 753
Theoretical plate model……Page 754
Stochastic model……Page 756
Multidimensional systems……Page 758
Estimation of the minimum peak number in the peak cluster……Page 759
Determination of the interconversion energy barrier……Page 761
Conclusion……Page 767
References……Page 768
Introduction……Page 727
Practical application of Eq. (1)……Page 728
Some potential complications in the use of Eq. (1) for characterizing column selectivity……Page 729
Column equilibration……Page 730
Calculations……Page 733
Applicability of Eq. (1) for the alkyl-silica columns of Table 1……Page 734
Values of H, S, A, B, and C as a function of column properties……Page 735
Comparison of values of C(7.0) versus C(2.8)……Page 737
Comparing the selectivity of two columns by means of a single measure……Page 739
Relative importance of different column parameters in controlling selectivity……Page 742
Other solute-column interactions (S, A, B, C)……Page 743
Conclusions……Page 744
Nomenclature……Page 745
Derivation of final values of the solute parameters eta ‘, ?’, etc…….Page 746
Allowable differences in H, S, etc., for columns of equivalent selectivity……Page 747
References……Page 748
Introduction……Page 714
Influence of temperature on retention……Page 715
Influence of temperature on selectivity in reversed-phase systems……Page 716
Influence of temperature on column efficiency; packed columns……Page 719
Temperature programs and isothermal separations……Page 720
Separations with non-aqueous systems……Page 723
Temperature and shape selectivity……Page 724
References……Page 725
Developments in suppressor technology for inorganic ion analysis by ion chromatography using……Page 696
General response equation for conductivity detection……Page 697
Purpose and functioning of suppressors……Page 699
Hollow-fibre membrane suppressors……Page 701
Micromembrane suppressor……Page 702
Electrolytic membrane-based suppressors……Page 704
Packed-column mini-suppressors……Page 706
Continuously regenerated packed-column suppressors……Page 709
Post-suppressors……Page 711
Conclusions……Page 712
References……Page 713
Evolution of ion-exchange: from Moses to the Manhattan Project to Modern Times……Page 682
From Moses?……Page 683
?to the Manhattan Project……Page 684
The idea……Page 685
The competition……Page 687
The suppressor……Page 688
The column……Page 689
The eluent……Page 690
Gradient elution……Page 691
An evolutionary dead end?……Page 693
Recapitulation and conclusion……Page 694
References……Page 695
Introduction……Page 665
Two-dimensional liquid chromatography……Page 667
Instrumentation……Page 669
Instrument control……Page 673
Using LC x SEC to study critical chromatography……Page 674
Chemical-composition distributions of copolymers……Page 677
Conclusions……Page 679
References……Page 680
Strategies for the determination of bioactive phenols in plants, fruit and vegetables……Page 630
Introduction……Page 631
Screening of bioextracts……Page 634
Sample preparation……Page 635
Analyte recovery……Page 636
Recovery of flavan-3-ols and anthocyanins……Page 642
Fresh versus processed samples……Page 645
Quantification……Page 646
Chromatographic methods……Page 648
Detection……Page 649
Mass spectrometry……Page 650
Applications of mass spectrometry……Page 652
Nuclear magnetic resonance spectrometry……Page 655
Degradation products of antioxidants……Page 656
Conclusions……Page 658
References……Page 659
Analysis of food proteins and peptides by chromatography and mass spectrometry……Page 603
Introduction……Page 604
Purification and separation by high-performance liquid chromatography on conventional packin……Page 605
Chromatography of peptides……Page 607
Reversed-phase, ion-exchange and size exclusion chromatography……Page 610
Hydrophobic interaction chromatography……Page 614
Separation and purification by perfusion high-performance liquid chromatography……Page 616
Chromatography of proteins……Page 617
Matrix-assisted laser desorption ionization mass spectrometry……Page 618
Electrospray ionization mass spectrometry……Page 620
Emergent MS-based techniques for proteomics……Page 624
Pyrolysis-mass spectrometry……Page 626
References……Page 627
Recent liquid chromatographic-(tandem) mass spectrometric applications in proteomics……Page 583
Introduction……Page 584
2D gel electrophoresis……Page 585
Drawbacks of the conventional approach in proteomics……Page 586
LC-based approaches in proteomics……Page 587
Multi-dimensional LC-MS-MS……Page 588
High resolution LC-MS using accurate mass tags……Page 589
Absolute quantitation……Page 590
Labeling of peptides……Page 591
ICAT labeling……Page 592
Isotope effect in LC……Page 593
Post-translational modifications……Page 594
Identification and enrichment of phosphorylated peptides……Page 595
O-GlcNAc modification……Page 597
Ubiquitination……Page 598
References……Page 599
Strategies for the liquid chromatographic-mass spectrometric analysis of non-polar compounds……Page 566
General aspects of electrochemistry-MS……Page 567
Derivatization for electrochemistry-MS……Page 568
Use of external electrochemical cells……Page 569
Combining electrochemistry with LC and MS……Page 571
Atmospheric pressure photoionization (APPI)……Page 572
LC-atmospheric pressure electron capture negative ion-MS……Page 575
Coordination ionspray-MS (CIS-MS)……Page 578
References……Page 580
The role of chromatography in the hunt for red tide toxins……Page 544
Preliminary considerations……Page 545
Bioassay-directed fractionation……Page 547
Integration of bioassay-directed fractionation with analysis……Page 548
Developing the tools……Page 549
Thin-layer chromatography……Page 551
Liquid chromatography……Page 552
Liquid chromatography-mass spectrometry……Page 553
Following the symptoms……Page 557
Prospecting for toxin analogues……Page 559
Surveying for toxins……Page 560
Standards and reference materials……Page 561
Conclusions……Page 563
References……Page 564
Liquid chromatography-(tandem) mass spectrometry of selected emerging pollutants (steroid……Page 520
Introduction……Page 521
Sample preparation……Page 523
Aqueous samples……Page 524
Aqueous samples……Page 526
Aqueous samples……Page 529
Steroid sex hormones and related synthetic compounds……Page 531
Drugs……Page 535
Alkylphenolic compounds……Page 538
Conclusions and future perspectives……Page 541
References……Page 542
Liquid chromatography-mass spectrometry and strategies for trace-level analysis of polar org……Page 495
Introduction……Page 496
Ionization mode……Page 497
Chromatography……Page 498
Aromatic sulfonates……Page 499
Sulfonated dyes……Page 500
Haloacetic acids……Page 501
Linear alkylbenzene sulfonates……Page 502
Carboxylates……Page 503
Phenols……Page 505
Alkylphenol ethoxylates……Page 506
Other non-ionic and amphoteric surfactants……Page 507
Polycyclic aromatic hydrocarbons……Page 508
Quaternary ammonium compounds……Page 509
Organometallic compounds……Page 510
Matrix effects……Page 511
Avoidance of false-positive findings……Page 512
Screening……Page 514
Conclusions……Page 515
References……Page 516
Liquid chromatography-inductively coupled plasma mass spectrometry……Page 475
Historical development of coupling of liquid chromatography with elemental detectors: FAAS,……Page 476
Commercial introduction of ICP-MS and interfacing to LC……Page 477
Reversed-phase chromatography (RP)……Page 478
Reversed-phase ion pairing chromatography (RPIP)……Page 479
Ion-exchange chromatography (IEC)……Page 480
Water analysis……Page 481
Soils……Page 483
Food and nutritional supplements……Page 484
Speciation in plants……Page 487
Animal tissues……Page 488
Urine samples……Page 489
Use of ES-MS for complimentary information……Page 491
Conclusion……Page 492
References……Page 493
Liquid chromatography with ultraviolet absorbance-mass spectrometric detection and with nucl……Page 456
Introduction……Page 457
Problems encountered in metabolite profiling……Page 458
Application of LC/UV/MS and LC/NMR in phytochemical analysis……Page 459
Dereplication of flavanones and isoflavones in crude plant extracts……Page 460
LC/UV-DAD with post-column derivatisation……Page 461
De novo structure determination based on on-line data……Page 462
Stop-flow LC/1H-NMR with 2D correlation experiments for the structure elucidation of a flava……Page 464
On-line characterisation of unstable cinnamic ester derivatives in Jamesbrittenia fodina……Page 467
Study of epimerisation reactions……Page 468
On-line absolute configuration determination……Page 471
Conclusion……Page 472
References……Page 474
Progress in liquid chromatography-mass spectrometry instrumentation and its impact on high-t……Page 432
Developments in interfacing for LC-MS……Page 433
Electrospray interfacing and ionization……Page 434
General API source design topics……Page 435
RF-only multipole devices in the transition region……Page 436
Alternative API interfacing and ionization techniques……Page 437
Time-of-flight mass analysers……Page 438
Fourier-transform ion-cyclotron resonance instruments……Page 439
Open-access LC-MS for synthetic chemists……Page 440
High-throughput MS characterization……Page 441
Multichannel electrospray inlets……Page 443
Microfabricated microfluidic and chip-based electrospray devices……Page 445
Implementing bioactivity screening……Page 446
High-throughput sample pretreatment methods……Page 448
Fast chromatography for high-throughput analysis……Page 449
Ion suppression by matrix effects in high-throughput quantitative analysis……Page 450
Conclusions……Page 451
References……Page 452
Measurement of endogenous estrogens: analytical challenges and recent advances……Page 420
Structural and metabolism of endogenous estrogens……Page 421
Biological actions of endogenous estrogens……Page 422
Analytical challenges……Page 423
HPLC with electrochemical detection……Page 424
Electrospray mass spectrometry (ESI-MS)……Page 425
Liquid chromatography atmospheric pressure photoionization tandem mass spectrometry (LC-APP……Page 427
Gas chromatography with electron capture detection (GC-ECD) and gas chromatography electro……Page 428
References……Page 430
Introduction……Page 404
LC separations……Page 406
Analytical difficulties……Page 407
Detailed characterisation of intact triacylglycerides……Page 409
Characterisation of triacylglycerides as fatty acid methylesters……Page 410
Quantitative aspects of comprehensive LC x GC in TAG characterisation……Page 413
Group-type screening of fats and oils……Page 414
Improved target compound analysis……Page 416
Acknowledgements……Page 417
References……Page 419
On-line coupled liquid chromatography-gas chromatography……Page 376
Reasons for selecting on-line LC-GC……Page 377
Apparatus and conditions for on-line coupled LC-GC……Page 378
Liquid chromatography in LC-GC……Page 379
Interfaces and evaporation techniques in LC-GC……Page 381
Retention gap techniques……Page 382
Vaporiser interface……Page 383
Removal of solvent vapours……Page 384
Direct transfer of RPLC eluents……Page 385
Indirect methods……Page 386
Choice of interface and evaporation method……Page 387
Setting up an LC-GC method……Page 389
Food samples……Page 390
Petrochemical and industrial samples……Page 395
Environmental applications……Page 396
Pharmaceutical and biological samples……Page 397
Coupling an extraction system on-line to LC-GC……Page 398
Concluding remarks……Page 399
References……Page 400
Hyphenation and hypernationThe practice and prospects of multiple hyphenation……Page 344
Introduction……Page 345
MS……Page 346
FTIR and AED……Page 348
FTIR/MS……Page 349
AED/MS……Page 350
Hyphenation……Page 352
FTIR……Page 353
DAD UV……Page 355
MS……Page 356
NMR……Page 359
Conclusion……Page 361
NMR/MS……Page 363
Extended hypernation……Page 368
Conclusions……Page 371
References……Page 373
Introduction……Page 330
Theoretical treatment……Page 332
Materials……Page 335
Thermodynamic parameters……Page 337
Isoenantioselective temperature……Page 339
Comparison of alpha -, beta – and ?-(3-O-butanoyl-2,6-di-O-n-pentyl)-cyclodextrins……Page 341
References……Page 342
Introduction……Page 319
Instrumentation……Page 321
SBSE-TD-capillary GC-MS analysis of pesticides……Page 322
Multi-residue screening of pesticides in different foodstuffs……Page 324
Quantitative analysis of pesticides identified by SBSE-RTL-capillary GC-MS……Page 325
References……Page 329
Derivatisation reactions in the chromatographic analysis of chemical warfare agents and thei……Page 290
The requirement for analysis……Page 291
Some disadvantages of derivatisation……Page 292
Recent trends in derivatisation……Page 293
Nerve agents……Page 294
Degradation pathways for nerve agents……Page 295
Methyl esters……Page 296
Silyl esters……Page 297
Pentafluorobenzyl esters……Page 299
LC analysis of phosphonic acids……Page 301
Silyl ethers……Page 302
Thiodiglycol sulphoxide……Page 304
beta -Lyase metabolites……Page 305
Other biological indicators of poisoning requiring derivatisation……Page 306
GC analysis of Lewisites and their degradation products……Page 307
Dithiol derivatising agents……Page 308
LC analysis of Lewisite acids……Page 310
GC of aromatic organoarsenicals……Page 311
Phosgene……Page 312
Hydrogen cyanide……Page 313
Perfluoroisobutene (PFIB)……Page 314
Derivatisation as part of general screening procedures……Page 315
References……Page 316
State-of-the-art of gas chromatography-based methods for analysis of anthropogenic volatile……Page 275
General aspects……Page 276
Sample preparation……Page 278
Dynamic headspace techniques……Page 279
Membrane inlet mass spectrometry……Page 280
Field measurements: a literature overview……Page 281
A case-study: the Scheldt estuary……Page 284
Acknowledgements……Page 288
References……Page 289
Developments in the use of chromatographic techniques in marine laboratories for the determi……Page 246
Introduction……Page 247
Extraction……Page 248
Clean-up……Page 249
GC separation……Page 250
Toxaphene……Page 251
Interlaboratory studies and CRMs……Page 252
PCBs……Page 255
Dioxin-like PCBs and dioxin and furans……Page 257
Interlaboratory studies and CRMs……Page 258
Brominated flame retardants (BFRs)……Page 259
Thin-layer chromatography……Page 262
Gas chromatography……Page 263
Liquid chromatography……Page 264
Interlaboratory studies and CRMs……Page 266
References……Page 270
Fast gas chromatography and its use in trace analysis……Page 223
Introduction……Page 224
Definitions of faster GC……Page 225
Approaches towards faster GC……Page 226
Carrier gas and pressure regulators……Page 231
Injection systems……Page 232
Columns and ovens……Page 237
Detectors……Page 239
Conclusion……Page 243
References……Page 244
Matrix effects in (ultra)trace analysis of pesticide residues in food and biotic matrices……Page 206
Matrix effects in gas chromatography……Page 207
Interferences of matrix with detection process……Page 208
Matrix-induced chromatographic response enhancement……Page 209
Approaches to avoid overestimation of results……Page 212
Minimisation of the primary causes: no active sites in GC system, no matrix in sample……Page 213
Calibration employing masking of active sites……Page 214
Choice of an optimal injection technique……Page 215
Matrix effects in LC-MS and their compensation……Page 217
Improved sample preparation, optimised HPLC conditions……Page 218
Conclusions……Page 219
References……Page 221
Practical approaches to fast gas chromatography-mass spectrometry……Page 178
Introduction……Page 179
Practical scenarios and speed……Page 180
Batch sample processing……Page 181
Sequential sample processing……Page 182
Direct sample introduction……Page 183
The analytical triangle and fast GC-MS……Page 184
Retention factor……Page 185
Capillary column terminology……Page 186
Speed enhancement factor……Page 187
Quadrupole and ion trap……Page 188
Points across a peak……Page 190
Deconvolution……Page 191
Speed or selectivity gains with deconvolution……Page 192
Scan range……Page 193
Matrix-limited noise……Page 194
Identification and confirmation by GC-MS……Page 197
Fast temperature programming GC-MS……Page 198
Low-pressure GC-MS……Page 199
Supersonic molecular beam GC-MS……Page 200
Pressure-tunable GC-GC-MS……Page 201
Applications of fast GC-MS……Page 202
References……Page 203
Comprehensive two-dimensional gas chromatography: a powerful and versatile analytical tool……Page 122
Introduction……Page 123
Principle of GC x GC……Page 124
Orthogonality and GC column selection……Page 125
Column dimensions……Page 127
Modulation……Page 128
Detectors in GC x GC……Page 130
Retention time……Page 131
Quantification……Page 132
Analyte detectability……Page 133
Peak integration……Page 134
Target analysis……Page 135
Nontarget analysis……Page 136
Petrochemical samples: GC x GC-FID……Page 138
Petrochemical samples: GC x GC-TOF MS……Page 142
Food extracts……Page 143
Fatty acids: GC x GC-FID……Page 146
Steroids in microalgae: GC x GC-TOF MS……Page 148
Separation of CBs: GC x GC-?ECD……Page 150
PAHs in sediment: GC x GC-TOF MS……Page 154
Garlic powder: GC x GC-FID……Page 156
Conclusions……Page 157
References……Page 159
Introduction……Page 95
Gas chromatography-quadrupole mass spectrometry……Page 97
Gas chromatography-ion-trap mass spectrometry (GC-ITMS)……Page 101
Gas chromatography-high resolution mass spectrometry (GC-HRMS)……Page 106
GC-time-of-flight mass spectrometry (GC-TOF-MS)……Page 110
Fast GC and GC x GC……Page 111
Accurate mass instruments……Page 114
Laser and plasma sources……Page 115
Portable GC-MS instruments……Page 116
Conclusions and future perspectives……Page 118
References……Page 119
Introduction……Page 79
Comprehensive 2D GC……Page 80
Modulator performance……Page 81
Cryogenic modulation modes……Page 82
Chemicals and standards……Page 83
Instrumental……Page 85
GC x GC analysis of drugs standards……Page 86
Calibration and detection limits……Page 88
Application to real samples……Page 90
References……Page 93
Miniaturized sample preparation combined with liquid phase separations……Page 64
Introduction……Page 65
Desorption interface……Page 66
Applications of SPME to various complex sample matrices……Page 67
Applications of in-tube SPME……Page 69
Fiber-in-tube……Page 70
Miniaturization of FIT cartridge……Page 72
Polymer-coated fiber-packed capillary as a powerful extraction medium……Page 74
Other miniaturized sample preparation techniques designed for liquid phase separations……Page 75
Acknowledgements……Page 76
References……Page 77
Immuno-based sample preparation for trace analysis……Page 40
Characteristics of the immuno-based extraction sorbents……Page 41
Antibodies……Page 42
Effect of the solid support and antibody immobilization procedures……Page 43
Capacity and bonding density……Page 44
Specificity and cross-reactivity……Page 45
Recovery and breakthrough volume……Page 46
Sample percolation and non-specific interactions……Page 47
Storage and reusability……Page 48
Liquid chromatography……Page 49
Capillary electrophoresis……Page 50
LC-UV or fluorescence……Page 51
LC-MS……Page 52
Gas chromatography……Page 53
Mass spectrometry……Page 54
Bioanalytical assays (immunoassays, bioassays)……Page 56
Synthesis and consequences for the extraction medium……Page 58
Examples of selective extraction procedures in aqueous samples……Page 60
References……Page 61
Contributions of liquid chromatography-mass spectrometry to ”highlights? of biomedical rese……Page 940
Presence of LC-MS in the biomedical literature and its weight relative to the whole field of……Page 941
New ionization and instrumentation techniques in LC-MS……Page 942
New LC separation techniques in LC-MS……Page 943
Chemistry highlights 2002……Page 944
Top 10 Medical/Health stories 2002……Page 945
Molecular targeted therapies come of age in oncology……Page 946
Imaging mass spectrometry……Page 948
High pressure LC-FTICR and AMT tag databases……Page 949
Protein chip-surface enhanced laser desorption ionization……Page 951
Conclusions……Page 953
References……Page 954
Strategies for the liquid chromatographic-mass spectrometric analysis of non-polar compounds……Page 955
General aspects of electrochemistry-MS……Page 956
Derivatization for electrochemistry-MS……Page 957
Use of external electrochemical cells……Page 958
Combining electrochemistry with LC and MS……Page 960
Atmospheric pressure photoionization (APPI)……Page 961
LC-atmospheric pressure electron capture negative ion-MS……Page 964
Coordination ionspray-MS (CIS-MS)……Page 967
References……Page 969
Recent liquid chromatographic-(tandem) mass spectrometric applications in proteomics……Page 972
Introduction……Page 973
2D gel electrophoresis……Page 974
Drawbacks of the conventional approach in proteomics……Page 975
LC-based approaches in proteomics……Page 976
Multi-dimensional LC-MS-MS……Page 977
High resolution LC-MS using accurate mass tags……Page 978
Absolute quantitation……Page 979
Labeling of peptides……Page 980
ICAT labeling……Page 981
Isotope effect in LC……Page 982
Post-translational modifications……Page 983
Identification and enrichment of phosphorylated peptides……Page 984
O-GlcNAc modification……Page 986
Ubiquitination……Page 987
References……Page 988
Introduction……Page 162
Comprehensive 2D GC……Page 163
Modulator performance……Page 164
Cryogenic modulation modes……Page 165
Chemicals and standards……Page 166
Instrumental……Page 168
GC x GC analysis of drugs standards……Page 169
Calibration and detection limits……Page 171
Application to real samples……Page 173
References……Page 176
A Century of Chromatography and volume 1000 of the Journal of Chromatography
Free Download
Be the first to review “A Century of Chromatography and volume 1000 of the Journal of Chromatography” Cancel reply
You must be logged in to post a review.
Reviews
There are no reviews yet.