Liu Henry0203506685, 9780203506684
Table of contents :
Cover
……Page 1
Pipeline Engineering……Page 3
Foreword……Page 5
Preface……Page 6
Acknowledgments……Page 9
The Author……Page 10
Contents……Page 12
1.2 BRIEF HISTORY OF PIPELINES……Page 23
1.3 EXISTING MAJOR PIPELINES……Page 24
1.5 FREIGHT (SOLIDS) TRANSPORT BY PIPELINES……Page 29
1.6 TYPES OF PIPELINES……Page 31
1.8 ADVANTAGES OF PIPELINES……Page 32
REFERENCES……Page 36
Appendix B: Conversion between SI and English (ft-lb-s) Units……Page 0
2.1 INTRODUCTION……Page 37
2.3 LOCAL MEAN VELOCITY AND ITS DISTRIBUTION (VELOCITY PROFILE)……Page 39
2.3.1 VARIATION OF VELOCITY ALONG PIPE……Page 41
2.3.2 VELOCITY PROFILE OF FULLY DEVELOPED FLOW……Page 43
2.4.1 CONTINUITY EQUATION……Page 46
2.4.2 ENERGY EQUATION……Page 47
2.4.3 MOMENTUM EQUATION……Page 49
2.4.4.1 Fitting Loss……Page 52
2.4.4.2 Pipe Loss……Page 57
2.4.4.3 Total Loss……Page 61
2.4.5 SHEAR ON PIPE WALL……Page 62
2.6 CAVITATION IN PIPELINE SYSTEMS……Page 64
2.7.1 PIPES IN SERIES……Page 67
2.7.2 PARALLEL PIPES……Page 68
2.8 INTERCONNECTED RESERVOIRS……Page 71
2.9 PIPE NETWORK……Page 75
2.10 UNSTEADY FLOW IN PIPE……Page 77
2.10.1.1 Drainage of a Reservoir or Pipe……Page 78
2.10.1.2 Flow Establishment (Fluid Acceleration Due to Sudden Valve Opening)……Page 81
2.10.1.3 Flow Oscillations in Interconnected Tanks……Page 83
2.10.2 UNSTEADY SOLUTION: WATER HAMMER……Page 85
2.10.2.2 Celerity of Water Hammer Waves……Page 86
2.10.2.3 Rise and Drop of Pressure in Pipe Due to Sudden Valve Closure……Page 87
2.10.2.4 Water Hammer Force on Valve……Page 88
2.10.2.5 Water Hammer Wave Propagation Due to Sudden Valve Closure……Page 89
2.10.2.6 Water Hammer Caused by Partial Closure of Valve……Page 91
2.10.2.7 Water Hammer with Finite Closure Time……Page 92
2.10.2.8 Characteristic Method……Page 93
2.10.3 SURGE TANKS……Page 94
PROBLEMS……Page 98
REFERENCES……Page 102
3.1.1 GENERAL ANALYSIS……Page 103
3.1.2 ISOTHERMAL COMPRESSIBLE PIPE FLOW WITH FRICTION……Page 106
3.1.3 ADIABATIC COMPRESSIBLE PIPE FLOW WITH FRICTION……Page 110
3.1.4 ISENTROPIC (ADIABATIC FRICTIONLESS) PIPE FLOW……Page 115
3.2.1 EQUATION OF STATE……Page 117
3.2.2 GAS GRAVITY……Page 121
3.2.3 VISCOSITY OF GAS MIXTURE……Page 122
3.2.4 FLOW EQUATIONS……Page 124
3.2.5 APPROXIMATE FLOW EQUATIONS……Page 128
3.3.1 GENERAL RELATIONSHIPS……Page 129
3.3.4 ISENTROPIC COMPRESSION OF IDEAL GAS……Page 130
PROBLEMS……Page 133
REFERENCES……Page 134
4.1 INTRODUCTION……Page 135
4.2 CLASSIFICATION OF NON-NEWTONIAN FLUIDS……Page 136
4.3.1 POWER-LAW FLUIDS……Page 138
4.4 NON-NEWTONIAN PIPE FLOW: LAMINAR……Page 139
4.4.1 POWER-LAW FLUIDS……Page 140
4.4.2 BINGHAM FLUIDS……Page 143
4.5.1 TOMITA’S EQUATIONS……Page 147
PROBLEMS……Page 148
REFERENCES……Page 149
5.1 FLOW REGIMES……Page 150
5.2 PSEUDOHOMOGENEOUS FLOWS……Page 155
5.3.2 PRESSURE GRADIENT IN HETEROGENEOUS FLOW……Page 157
5.4 INTERMEDIATE FLOW REGIME……Page 161
5.5.1 WEAR OF SLURRY PIPELINES……Page 162
5.5.3 SLURRY PUMPS, VALVES, AND FLOWMETERS……Page 163
5.5.4 APPLICATION OF SLURRY PIPELINES……Page 164
PROBLEMS……Page 165
REFERENCES……Page 167
6.1 INTRODUCTION……Page 168
6.2.1 NEGATIVE-PRESSURE SYSTEMS……Page 169
6.2.2 POSITIVE-PRESSURE SYSTEMS……Page 170
6.3 FLOW CHARACTERISTICS……Page 171
6.4.1 GENERAL SYSTEMS……Page 175
6.4.2 INTAKES……Page 177
6.4.3 PRIME MOVERS (AIR PUMPS)……Page 178
6.4.4 SEPARATOR AND CLEANER……Page 179
6.5 SYSTEM DESIGN……Page 180
6.6 SAFETY CONSIDERATIONS……Page 181
6.7.1 PICKUP VELOCITY……Page 182
6.7.2 DENSITY AND PICKUP VELOCITY VARIATION ALONG PIPELINE……Page 184
6.7.3 LOADING RATIO……Page 185
6.7.4.1 Pipe Loss (Loss in Straight Uniform Pipe)……Page 186
6.7.4.2.1 Inlet Loss Due to Particle Acceleration……Page 188
6.7.4.2.2 Loss along Bends……Page 190
6.7.6 DENSE-PHASE FLOW……Page 191
PROBLEMS……Page 192
REFERENCES……Page 193
7.1 INTRODUCTION AND HISTORY……Page 194
7.2.1 SYSTEM DESCRIPTION……Page 198
7.2.2.1 Capsule Pressure Drop and Drag……Page 199
7.2.2.2 Steady-State Capsule Velocity……Page 200
7.2.2.3 Pressure Variation along PCP……Page 202
7.2.2.4 Power of PCP……Page 204
7.3.1 SYSTEM DESCRIPTION……Page 205
7.3.2.1 Basic Capsule Flow Relationships……Page 206
7.3.2.2 Four Regimes of HCP Flow……Page 208
7.3.2.3 Incipient Velocity……Page 209
7.3.2.4 Lift-Off Velocity……Page 211
7.3.2.5 Critical Velocity……Page 212
7.3.2.6 Capsule Velocity……Page 213
7.3.3.1 Injection……Page 214
7.3.4.1 Pump Bypass……Page 216
7.3.4.2 Electromagnetic Capsule Pumps……Page 217
7.4 COAL LOG PIPELINE (CLP)……Page 219
7.5 CONCLUSION……Page 220
PROBLEMS……Page 221
REFERENCES……Page 222
8.1.1.1 Ordinary Steel Pipe……Page 225
8.1.1.3 Cast-Iron Pipe……Page 227
8.1.1.8 Other Metal Pipes……Page 228
8.1.2.1 Concrete Pipe……Page 229
8.1.2.2 Plastic Pipe……Page 233
8.1.2.5 Graphite and Carbon Pipes……Page 234
8.2 PIPE DESIGNATION……Page 235
8.3 CONNECTIONS (JOINTS)……Page 236
8.5 VALVES……Page 242
8.6 PRESSURE RELIEF VALVES AND PRESSURE REGULATING VALVES……Page 245
REFERENCES……Page 247
9.1 ENERGY CONVERSIONS BY PUMPS AND TURBINES……Page 248
9.2.1.1 Main Components……Page 250
9.2.1.2 Fluid Mechanics of Centrifugal Pumps……Page 251
9.2.1.3 Euler’s Pump Performance Curves……Page 253
9.2.1.4.1 For a Single Pump……Page 255
9.2.1.4.2 For Booster Pumps……Page 257
9.2.1.5 Pumps in Combination……Page 261
9.2.2.1 Piston Pumps……Page 263
9.2.2.2 Plunger Pumps……Page 267
9.2.2.5 Screw Pumps……Page 269
9.2.4.1 Jet Pumps……Page 270
9.2.4.2 Airlift Pumps……Page 271
9.2.4.3 Electromagnetic (EM) Pumps……Page 272
9.3.1 ELECTRIC MOTORS……Page 275
9.3.1.2 Synchronous Motors……Page 277
9.3.1.3 DC Motors……Page 278
9.3.2.2 Turbines……Page 279
9.4.3 GEARS……Page 280
9.4.6 EDDY-CURRENT COUPLING……Page 281
9.5.1.1 Discharge Control by Valves……Page 282
9.5.1.3 Motor Starters……Page 283
9.5.2.1 Priming……Page 284
9.5.2.3 Vibration and Noise……Page 286
9.5.2.4 Overheating……Page 287
9.5.3 MAINTENANCE……Page 288
9.6.2 FLOW PARAMETERS……Page 289
9.6.5 RELIABILITY……Page 290
9.6.9 PUMP EFFICIENCY……Page 291
9.7 COMPRESSORS, BLOWERS, AND FANS……Page 292
9.8.2.1.1 Centrifugal Type……Page 295
9.8.2.1.3 Impulse Type……Page 297
9.9 DIMENSIONLESS PARAMETERS……Page 300
PROBLEMS……Page 302
REFERENCES……Page 304
10.1.1.1 Venturi……Page 305
10.1.1.2 Orifice……Page 307
10.1.1.3 Elbow Flowmeter……Page 308
10.1.1.6 Rotameters……Page 310
10.1.1.7 Magnetic Flowmeter……Page 311
10.1.1.8 Acoustic Flowmeter……Page 313
10.1.2.1 Constant-Head System……Page 315
10.1.2.2 Meter Prover……Page 316
10.2 SENSORS AND EQUIPMENT……Page 317
10.2.1 MANOMETERS……Page 318
10.2.3 TEMPERATURE SENSORS……Page 319
10.2.4 VELOCITY SENSORS……Page 320
10.2.5 VIBRATION SENSORS……Page 322
10.2.7 DENSITY MEASUREMENTS……Page 323
10.2.8 PIG AND CAPSULE SENSORS……Page 324
10.3.1 PURPOSES AND TYPES……Page 325
10.3.2 PIGGING SYSTEM……Page 327
10.3.3 PIG MOTION ANALYSIS……Page 329
PROBLEMS……Page 331
REFERENCES……Page 333
11.1 LINING, COATING, AND WRAPPING……Page 334
11.2 INSULATION, TRACING, JACKETING, AND ELECTRIC HEATING……Page 335
11.3.1 TYPES OF CORROSION……Page 336
11.3.1.3 Galvanic Corrosion……Page 337
11.3.1.4 Electrolytic Corrosion……Page 339
11.3.1.5 Other Types of Corrosion……Page 340
11.3.2.2 Soil Resistivity Measurement……Page 341
11.3.2.3 Pipe-to-Soil Potential……Page 343
11.3.2.4 Line Current Measurement……Page 344
11.3.3 CATHODIC PROTECTION……Page 345
REFERENCES……Page 346
12.1 PROCEDURES INVOLVED IN PLANNING AND CONSTRUCTION OF NEW PIPELINES……Page 347
12.3 BENDING OF PIPES……Page 350
12.4 CONNECTING PIPES……Page 352
12.4.3 WELDING……Page 353
12.5 BORING AND TUNNELING TO INSTALL PIPE—TRENCHLESS TECHNOLOGIES……Page 355
12.5.1.1 Horizontal Auger Boring……Page 356
12.5.1.2 Microtunneling……Page 357
12.5.1.3 Horizontal Directional Drilling (HDD)……Page 358
12.5.3 TUNNELING……Page 360
12.5.4 COMMENTS ON TRENCHLESS CONSTRUCTION……Page 361
12.6 PIPELINE CONSTRUCTION IN MARSH AND SWAMP……Page 362
12.7 OFFSHORE CONSTRUCTION……Page 363
12.8.1 FREEZING……Page 365
REFERENCES……Page 366
13.1 INTRODUCTION……Page 368
13.2.1 STRESS DUE TO INTERNAL FLUID PRESSURE……Page 370
13.2.1.1 Steady Pressure……Page 372
13.2.1.2 Unsteady Pressure (Water Hammer)……Page 373
13.2.1.3 Hydrostatic Pressure……Page 374
13.2.3.1 Marston’s Theory and Classification of Buried Conduits……Page 375
13.2.3.2 Rigid Conduit in Ditch……Page 376
13.2.3.3 Flexible Conduit in Ditch……Page 379
13.2.3.4 Embankment Conduit……Page 380
13.2.5 OTHER LOADS ON PIPELINES……Page 382
13.3.1 HIGH-PRESSURE PIPES……Page 383
13.3.1.2 Effects of Pipe Bending……Page 384
13.3.1.3 Seismic Design of Pipelines……Page 386
13.3.2.1 Soil Classification……Page 387
13.3.2.3.2 Standard Installations……Page 388
13.3.2.3.4 Design Procedure……Page 389
13.3.2.4 Flexible-Pipe Analysis and Design……Page 390
PROBLEMS……Page 393
REFERENCES……Page 395
14.1 GENERAL OPERATION OF PIPELINES……Page 396
14.2 AUTOMATIC CONTROL SYSTEMS……Page 397
14.3.1 INTEGRITY MONITORING……Page 398
14.3.2 LEAK DETECTION……Page 399
14.3.2.1 Mass-Balance Method……Page 400
14.3.2.3 Computational Modeling of Pipeline Systems……Page 401
14.3.2.6 Pigs……Page 402
14.4 INTEGRITY MANAGEMENT PROGRAM……Page 403
14.5 RISK-BASED MANAGEMENT……Page 404
14.6 PIPELINE MAINTENANCE……Page 405
14.7.1 CURED-IN-PLACE LINING……Page 406
14.7.4 PIPE-SHRINKING……Page 407
REFERENCES……Page 408
ENGLISH……Page 409
GREEK……Page 414
OTHERS……Page 415
DENSITY……Page 416
TEMPERATURE……Page 417
Appendix C: Physical Properties of Certain Fluids and Solids……Page 418
Reviews
There are no reviews yet.