Theoretical physics fin de siecle

Free Download

Authors:

Edition: 1

Series: LNP0539

ISBN: 3540668012, 9783540668015

Size: 2 MB (2039969 bytes)

Pages: 311/311

File format:

Language:

Publishing Year:

Category:

Andrzej Borowiec, Wojciech Cegla, Bernard Jancewicz, Witold Karwowski3540668012, 9783540668015

This collection of articles deals with many of the fundamental problems in quantum physics, addressing current topics of research in quantum field theory and supersymmetry in particular. It has been written by leading researchers in the field who emphasize the mathematical and conceptual aspects of the physical theories. Speculative topics at the very forefront of research have been included to illustrate the many open possibilities in contemporary theoretical and mathematical physics.

Table of contents :
Foreword……Page 5
Jan Lopuszanski – the Man and His Achievments……Page 7
List of Participants……Page 12
Contents……Page 17
About the Volume……Page 20
Introduction……Page 24
1 Molecules and Chemical Forces in the Old Quantum Theory (1920-1923)……Page 26
2 Göttingen, a Center of the Quantum Mechanics of Molecules (1925-1930)……Page 28
3 Born and the Theory of Chemical Binding (1930-1933)……Page 32
References……Page 35
1 Introduction……Page 38
2 Proposal of a Picture and Terminology……Page 43
1 Introduction. Many-Valued Logic and Nondistributive Logic……Page 47
2 Classical (Non-Quantum) Modality……Page 55
3 Quantum Modality……Page 58
4 Modal Interpretation of Classical and Quantum Physics……Page 60
References……Page 63
1 Introduction……Page 67
2.1 Classical Theory……Page 68
2.2 The Equation……Page 70
2.3 The Potential……Page 72
2.4 Poincar e Invariance……Page 76
3.1 The Position Operator……Page 78
3.2 Nonlocal Interactions……Page 81
3.3 The Model……Page 85
4 Conclusions……Page 87
References……Page 88
1 Introduction……Page 90
2.1 1d – Classical Mechanics……Page 92
2.2 Quantum Mechanics of the Deformed 1d-Oscillator……Page 93
2.3 The Singular Oscillator……Page 99
2.4 Arbitrary Potentials V (x)……Page 101
3 Systems with Two Degrees of Freedom……Page 102
4 The s-Equivalence for Spherically Symmetric Potentials Revisited……Page 104
5 Interactions as Modified Commutators in Quantum Field Theory……Page 105
References……Page 106
1 Introduction……Page 108
2 Relativistic Wave Equation……Page 109
3 Quantum Fields……Page 112
References……Page 115
1 Introduction……Page 117
2 The Constructive Program……Page 118
3.1 Relative Coordinates……Page 122
3.2 Elementary Symmetric Polynomials……Page 123
3.3 The AN-1 Series……Page 124
3.4 The G2 and AG3 Models……Page 126
4.1 The BCN and DN Models……Page 130
4.2 The F4 Model……Page 132
5 Coxeter Groups, Orbits and Prepotentials……Page 134
References……Page 138
1 Introduction……Page 140
2 Generalizations……Page 142
3 Examples……Page 143
References……Page 146
The Particle Structure Implies Relative Entropy Bounds……Page 148
1 The Relative Entropy Bounds for Gibbs Measures……Page 149
2 Equivalence of Equilibrium and Non-Equilibrium Descriptions……Page 150
4 Strong Decay to Equilibrium in Disordered Systems……Page 152
5 The Relative Entropy Estimates in Quantum Systems……Page 153
6 Hypercontractivity in Noncommutative ILp Spaces……Page 154
7 Spectral Theory of Hypercontractive Semigroups……Page 155
References……Page 157
2 The Algebraic Structure……Page 160
3.1 Basic Definitions……Page 162
3.2 Examples of Topological Partial *-Algebras……Page 164
4 Partial *-Algebras of Closable Operators……Page 167
5.1 Generalities……Page 169
5.2 The GNS Construction……Page 170
6.1 *-Automorphisms……Page 173
6.2 Automorphism Groups and *-Derivations……Page 174
7 Epilogue……Page 176
References……Page 177
1 Introduction……Page 179
2 CQ*-Algebras……Page 180
2.1 CQ*-Algebras of Operators on Scales of Hilbert Spaces……Page 181
2.2 Mathematical Properties of CQ*-Algebras……Page 182
3 CQ*-Algebras and Spin Lattice Systems……Page 184
3.1 Thermodynamical Limits……Page 187
4 Conclusions……Page 189
References……Page 190
1 Introduction……Page 191
2 Generalization of Ferber-Shirafuji Superparticle Model: Spinor Fundamental Variables and Central Charges……Page 194
3 D = 10 and D = 11 Models with One Fundamental Spinor……Page 198
4 A Set of D = 11 Massless Superparticle Models with Conservation of More than 1=2 Target Space Supersymmetries……Page 200
4.1 Spinor Moving Frame……Page 201
4.2 Action for D = 11 Massless Superparticle with Tensorial Central Charge Coordinates……Page 202
5 Final Remarks……Page 204
References……Page 205
1 Introduction……Page 207
2 Implementations of Odd Derivations……Page 208
3 Conclusions……Page 214
References……Page 216
1 Introduction……Page 217
2 Fundamental Assumptions……Page 218
3 Hermitian Wick Algebras……Page 219
4 Fock Space Representation……Page 220
References……Page 221
J. Wess……Page 223
References……Page 230
1 Introduction……Page 231
2 Newtonian System and Descendant Di erential Form……Page 233
3 The Second Newton’s Law as a Pfaffian System and Its Descendant Di fferential Form……Page 235
4 Formalism……Page 236
References……Page 237
2 Dynamics of Particle in Curved 2d Space-Time……Page 239
2.1 The Case R0 < 0……Page 241
3.1 The Case R0 < 0……Page 242
3.2 The Case R0 > 0……Page 243
References……Page 244
1 Introduction……Page 245
2 Dirac’s Generalized Square Root……Page 246
3 Neutrino Oscillations Involving vs and v’s……Page 248
4 Outlook: Non-Abelian Spin-1/2 Fermions……Page 252
References……Page 256
1 Introduction……Page 257
2 Magnetic Monopoles and Sphalerons in Flat Space……Page 258
3 The Spherically Symmetric Gravitational Field……Page 261
4 Gravitating Monopoles – BPS-Type Solutions……Page 263
5 Gravitating Monopoles without SUSY……Page 265
6 Coloured Black Holes……Page 268
References……Page 271
1 Introduction: Lattice and Continuum……Page 273
2 Local Cohomology……Page 274
3 What Is the Massles Continuum Limit of a Critical Classical Spin Model?……Page 275
4 The Noether Current: Some Generalities……Page 277
5 The Noether Current: Bounds and Inequalities……Page 280
6 Consequences……Page 281
References……Page 284
1 Introduction……Page 285
2 HBT Contribution……Page 286
3 The GGLP Contribution……Page 288
4 Density Matrix Approach……Page 289
5 Simple Case: Pure Final State……Page 291
6 Independent Production……Page 292
7 Einstein’s Condensation……Page 293
8 Statistical Physics Interpretation……Page 295
References……Page 297
W. Zimmermann……Page 298
1 Reduction in Massive Models……Page 299
2 Massless ß Functions……Page 303
3 Scheme Independence……Page 305
4 Elimination of Mass Parameters……Page 306
References……Page 308
J. Czerwonko……Page 309
L. Halpern……Page 310
References……Page 311

Reviews

There are no reviews yet.

Be the first to review “Theoretical physics fin de siecle”
Shopping Cart
Scroll to Top