A. Satoh (Eds.)0444514244, 9780444514240
Table of contents :
Content:
Preface
Pages vii-ix
A. Satoh
Chapter 1 What kinds of molecular-microsimulation methods are useful for colloidal dispersions? Original Research Article
Pages 1-6
Chapter 2 Statistical ensembles Original Research Article
Pages 7-18
Chapter 3 Monte carlo methods Original Research Article
Pages 19-63
Chapter 4 Governing equations of the flow field Original Research Article
Pages 64-75
Chapter 5 Theory for the motion of a single particle and two particles in fluid Original Research Article
Pages 76-101
Chapter 6 The approximation of mult-body hydrodynamic interactions among particles in a dense colloidal dispersion Original Research Article
Pages 102-108
Chapter 7 Molecular dynamics methods for a dilute colloidal dispersion Original Research Article
Pages 109-114
Chapter 8 Stokesian dynamics methods Original Research Article
Pages 115-126
Chapter 9 Brownian dynamics methods Original Research Article
Pages 127-152
Chapter 10 Typical properties of colloidal dispersions calculable by molecular-microsimulations Original Research Article
Pages 153-159
Chapter 11 The methodology of simulations Original Research Article
Pages 160-183
Chapter 12 Some examples of microsimulations Original Research Article
Pages 184-200
Chapter 13 Higher order approximations of multi-body hydrodynamic interactions Original Research Article
Pages 201-209
Chapter 14 Other microsimulation methods Original Research Article
Pages 210-238
Chapter 15 Theoretical analysis of the orientational distribution of spherocylinder particles with brownian motion Original Research Article
Pages 239-248
A1. Vectors and tensors
Pages 250-253
A2. The Dirac delta function and fourier integrals
Pages 254-257
A3. The Lennard-Jones potential
Pages 258-260
A4. Expressions of resistance and mobility functions for spherical particles
Pages 261-267
A5. Diffusion coefficients of circular cylinder particles and the resistance functions of spherocylinders
Pages 268-269
A6. Derivation of expressions for long-range interactions (the ewald sum)
Pages 270-278
A7. Unit systems used in magnetic materials
Page 279
A8. The virial equation of state
Pages 280-284
A9. Random numbers
Pages 285-292
A10. The numerical calculation of resistance and mobility functions
Pages 293-297
A11. Several Fortran subroutines for simulations
Pages 298-336
List of symbols
Pages 337-341
Index
Pages 342-344
Reviews
There are no reviews yet.