Anthony L. Andrady0471095206, 9780471095200
Bringing together the field’s leading researchers, Anthony Andrady’s innovative collection not only covers how plastics affect the environment, but also how environmental factors affect plastics. The relative benefits of recycling, resource recovery, and energy recovery are also discussed in detail. The first of the book’s four sections represents a basic introduction to the key subject matter of plastics and the environment; the second explores several pertinent applications of plastics with environmental implications–packaging, paints and coatings, textiles, and agricultural film use. The third section discusses the behavior of plastics in some of the environments in which they are typically used, such as the outdoors, in biotic environments, or in fires. The final section consists of chapters on recycling and thermal treatment of plastics waste. Chapters include:Commodity PolymersPlastics in TransportationBiodegradation of Common PolymersThermal Treatment of Polymer WasteIncineration of PlasticsThe contributors also focus on the effectiveness of recent technologies in mitigating environmental impacts, particularly those for managing plastics in the solid waste stream. Plastic and design engineers, polymer chemists, material scientists, and ecologists will find Plastics and the Environment to be a vital resource to this critical industry.
Table of contents :
Cover Page……Page 1
Title Page……Page 3
ISBN 0471095206……Page 4
1 AN ENVIRONMENTAL PRIMER……Page 6
4 PLASTICS IN PACKAGING……Page 7
7 WASTES FROM TEXTILE PROCESSING……Page 8
11 FLAMMABILITY OF POLYMERS……Page 9
14 PLASTICS RECYCLING……Page 10
17 POLYMERS IN AUTOMOBILE APPLICATIONS……Page 11
ON THE ENVIRONMENT…….Page 12
AND ON PLASTICS…….Page 15
ACKNOWLEDGMENTS……Page 17
CONTRIBUTORS……Page 18
PART 1……Page 21
CHAPTER 1 AN ENVIRONMENTAL PRIMER……Page 23
1.1. INTRODUCTION……Page 28
1.2.1. The Energy Crisis……Page 31
1.2.2. Materials Crisis……Page 37
1.3. THE SMALL PICTURE— BUSINESS ENTERPRISES……Page 38
1.3.1. Waste Recycling and Pollution Control……Page 42
1.4. VALUATION OF ENVIRONMENTAL RESOURCES……Page 45
1.5.1. Industry……Page 47
1.5.2. Consumers……Page 50
1.5.3. Government……Page 51
1.6. ENVIRONMENTAL ISSUES RELATED TO THE PLASTICS INDUSTRY: GLOBAL CONCERNS……Page 52
1.6.1. Depletion of NonRenewable Fossil Fuels and Raw-Material Reserves in Production of Plastics……Page 58
1.6.2. Emission of Greenhouse Gases, Particularly CO2……Page 61
1.6.3. Use of Ozone-Depleting Substances by Plastics Industry……Page 62
1.6.4. Potential Pollution of Air, Water, and Soil from Making and Using Plastic Materials……Page 64
1.7.1. Acidification of the Environment……Page 71
1.7.2. Issues Related to Solid Waste Management……Page 72
1.8.1. Being Environmentally Proactive……Page 76
REFERENCES……Page 78
SUGGESTED READING……Page 80
APPENDIX A: GLOBAL WARMING……Page 82
Rise in Sea Levels……Page 86
Effect on Crops……Page 87
REFERENCES……Page 88
APPENDIX B: DEPLETION OF STRATOSPHERIC OZONE……Page 89
REFERENCES……Page 94
CHAPTER 2 COMMON PLASTICS MATERIALS……Page 97
2.1. COMMON THERMOPLASTICS……Page 99
2.2. POLYETHYLENES……Page 103
2.2.1. Manufacture of Polyethylenes……Page 108
2.2.2. Environmental Aspects of Production……Page 112
2.3. POLYPROPYLENE……Page 113
2.3.1. Manufacture of Polypropylene……Page 114
2.4. POLY(VINYL CHLORIDE)……Page 116
2.4.1. Manufacture of Poly(vinyl chloride)……Page 117
2.4.2. Environmental and Safety Issues on PVC……Page 118
2.5.1. Manufacture of Polystyrene……Page 121
2.6. POLY(ETHYLENE TEREPHTHALATE)……Page 123
2.6.1. Manufacture of PET……Page 124
2.7. FROM RESINS TO THERMOPLASTIC PRODUCTS……Page 125
2.7.1. Extrusion Processing……Page 127
2.7.2. Injection Molding……Page 128
2.7.3. Blow Molding……Page 130
2.7.4. Extrusion Blowing of Film……Page 131
2.8. POLYURETHANE AND OTHER POLYMERIC FOAMS……Page 133
2.8.1. Polyurethane Foam……Page 134
2.8.3. Other Foams……Page 137
REFERENCES……Page 139
SUGGESTED READING……Page 140
3.1. INTRODUCTION……Page 143
3.2. CONTRIBUTIONS TO ENERGY……Page 144
3.4. TRANSPORT……Page 145
3.5. REPRESENTATIONS OF ENERGY……Page 146
3.6. GROSS AND NET CALORIFIC VALUES……Page 147
3.7. TYPICAL GROSS ENERGIES FOR POLYMER PRODUCTION……Page 148
3.8. CONVERSION PROCESSES……Page 152
3.9. ENERGY AND POLYMER RECYCLING……Page 153
REFERENCES……Page 155
PART 2……Page 157
4.1. INTRODUCTION……Page 159
4.2. PACKAGING FUNCTIONS……Page 162
4.3. ADVANTAGES OF PLASTICS IN PACKAGING APPLICATIONS……Page 163
4.4.1. Flexible Packaging……Page 165
4.4.2. Blow-Molded Containers……Page 166
4.4.3. Injection-Molded Components……Page 167
4.5. COMMON PACKAGING PLASTICS……Page 168
4.5.1. High-Density Polyethylene……Page 169
4.5.2. Low-Density Polyethylene (LDPE) and Linear Low-Density Polyethylene (LLDPE)……Page 171
4.5.3. Polyethylene Terephthalate……Page 172
4.5.4. Polypropylene……Page 174
4.5.5. Polystyrene……Page 175
4.5.6. Polyvinyl Chloride……Page 176
4.5.7. Other Plastics……Page 177
4.6. BIODEGRADABLE PLASTICS……Page 178
4.7. SOURCE REDUCTION……Page 180
4.8. REUSE……Page 182
4.9. RECYCLING……Page 183
4.10. ENERGY AND ENVIRONMENTAL ASSESSMENTS……Page 186
4.11. LEGISLATION AND REGULATION……Page 197
REFERENCES……Page 201
5.1. INTRODUCTION……Page 205
5.2.1. Characteristics and Performance of Coextruded and Blended Films……Page 207
5.2.2. Monolayer and Multilayer Films……Page 208
5.3.1. UV Radiation……Page 210
5.3.2. Temperature……Page 211
5.4. STABILIZATION OF PLASTICS……Page 212
5.4.2. Light Stability of Greenhouse Films Exposed in Near-Equatorial Regions……Page 213
5.5. MULCH FILMS……Page 217
5.5.1. Types of Plastic Used for Manufacture of Mulch Films……Page 218
5.7. DISPOSAL OF WASTE PLASTIC FILMS……Page 219
5.7.1. Disposal of Plastic Films in Near-Equatorial Regions……Page 220
5.8.1. Role of Drip Irrigation……Page 221
5.8.3. Stabilization of Polyolefin Pipes……Page 222
5.8.5. PVC Pipe Weatherability in Near-Equatorial Regions……Page 223
REFERENCES……Page 224
APPENDIX: STRUCTURE OF SELECTED UV-STABILIZERS……Page 227
6.1. ENVIRONMENT COST AND BENEFITS COATINGS……Page 231
6.3. COATINGS AND THE MATERIAL CRISIS……Page 232
6.4. HISTORICAL DEVELOPMENT OF THE COATINGS INDUSTRY……Page 233
6.5.1. Binders in Thermoset Coatings……Page 235
6.5.2. Binders in Waterborne Coatings……Page 236
6.6.1. Volatile Organic Compound Regulations……Page 240
6.6.2. Hazardous Air Pollutants (HAPs) and Right to Know Regulations……Page 244
6.6.3. Regulations of Pigments and Additives……Page 246
6.7. COATINGS INDUSTRY RESPONSES TO REGULATION……Page 248
6.7.1. Reduction of Solvent Emission by Selection of Application Method……Page 249
6.7.2. Conversion to Waterborne and High-Solids Coatings……Page 251
6.7.3. Conversion to High-Solids Coatings……Page 254
6.7.4. Powder and Radiation Cure Coatings……Page 256
6.7.5. Solvent Abatement: Incineration or Recovery……Page 258
REFERENCES……Page 259
7.1. INTRODUCTION……Page 263
7.1.2. General Description of Processing Wastes……Page 264
7.1.3. Solid Waste……Page 272
7.1.4. Air……Page 273
7.1.5. Indoor Air Pollution……Page 274
7.1.6. Toxic Air Emissions……Page 276
7.1.7. Wastewater……Page 281
7.1.8. Hazardous Waste……Page 285
7.2. YARN FORMATION……Page 286
7.3. YARN PREPARATION……Page 287
7.4. FABRIC FORMATION……Page 289
7.5.1. Chemical Specialties……Page 291
7.5.2. Chemical Commodities……Page 295
7.6.3. Preparation Processes……Page 296
7.6.6. Scouring……Page 301
7.6.10. Summary……Page 302
7.7.1. Product Design……Page 303
7.7.3. Dyeing Processes— Continuous and Batch……Page 305
7.7.5. Batch Dyeing Machines……Page 306
7.7.6. Bath Ratio in Batch Dyeing……Page 307
7.7.8. Pollutants Associated with Dye Classes……Page 308
7.7.9. Acid Dyes……Page 310
7.7.10. Basic Dyes for Acrylic and Certain Modified Polyesters……Page 311
7.7.11. Direct Dyes for Cotton, Rayon, and Other Cellulosic……Page 312
7.7.13. Fiber-Reactive Dyes on Cotton and Other Cellulosic……Page 313
7.7.14. Naphthol (Azoic) Dyes for Cotton and Other Cellulosic……Page 315
7.7.16. Sulfur Dyes for Cotton and Other Cellulosic……Page 316
7.7.17. Vat Dyes for Cotton and Other Cellulosic……Page 317
7.7.20. Bulk Systems/Auto Dispensing……Page 318
7.8. FINISHING……Page 319
7.8.2. Wool Finishing……Page 322
7.9. PRODUCT FABRICATION……Page 323
7.10. CONCLUSION……Page 324
REFERENCES……Page 325
PART 3……Page 331
8.1. INTRODUCTION……Page 333
8.2. WEATHER FACTORS AND THEIR EFFECTS ON POLYMERIC MATERIALS 8.2.1. Terrestrial Solar Radiation……Page 334
8.2.2. Temperature……Page 337
8.2.3. Moisture……Page 338
8.2.4. Oxygen……Page 339
8.3. ENVIRONMENTAL STABILITY AND DEGRADATION MECHANISMS OF POLYMERIC MATERIALS……Page 340
8.3.1. Polyolefins……Page 343
8.3.2. Polystyrene (PS)……Page 344
8.3.4. Aromatic Polyamides (Polyaramids)……Page 346
8.3.5. Poly(Vinyl Chloride)……Page 347
8.3.6. Polycarbonates……Page 348
8.3.7. Polyesters……Page 349
8.4. STABILIZATION OF POLYMERIC MATERIALS AGAINST ENVIRONMENTAL EFFECTS 8.4.1. Types of Stabilizers……Page 350
8.4.2. Stabilization of Polymers……Page 355
8.5. ENVIRONMENTAL WEATHERING TESTS……Page 359
8.6. LABORATORY-ACCELERATED WEATHERING TESTS……Page 362
8.6.1. Light Sources in Laboratory-Accelerated Test Devices……Page 363
8.6.2. Effect of SPD of Radiation Source on Weathering……Page 368
8.6.4. Temperature in Laboratory Weathering Tests……Page 369
8.6.5. Moisture in Laboratory Weathering Tests……Page 370
8.7. LABORATORY-ACCELERATED VERSUS ENVIRONMENTAL WEATHERING TESTS……Page 371
REFERENCES……Page 373
9.1. INTRODUCTION……Page 379
9.2. JUSTIFICATION……Page 380
9.4. BIODEGRADABLE POLYMERS FROM RENEWABLE RESOURCES……Page 381
9.4.1. Agricultural……Page 382
9.4.2. Biosynthesis……Page 385
9.5. BIODEGRADABLE POLYMERS FROM PETROLEUM-DERIVED PRODUCTS……Page 387
9.6. FUTURE DEVELOPMENTS……Page 388
REFERENCES……Page 390
10.1. INTRODUCTION……Page 399
10.2. PLASTIC LITTER AND OTHER MARINE DEBRIS 10.2.1. Categories and Sources……Page 401
10.2.3. Quantities and Distribution……Page 403
10.3. BIOLOGICAL AND ENVIRONMENTAL IMPACTS 10.3.1. Entanglement and Ingestion……Page 405
10.3.2. Epibionts and Associated Biota……Page 406
10.3.3. Ecotoxicology……Page 408
10.4. DEGRADATION OF PLASTICS AT SEA……Page 409
10.4.1. Defining Degradation……Page 410
10.4.2. Deterioration of Plastics in Seawater……Page 411
10.4.3. Degradation of Floating Plastics Debris……Page 413
10.5. PHOTODEGRADABLE PLASTICS AS A MITIGATION STRATEGY……Page 414
REFERENCES……Page 417
11.1. INTRODUCTION……Page 423
11.2. HEAT EXPOSURE OF A POLYMER……Page 426
11.3. RELEASE OF POLYMER VAPORS……Page 427
11.4. POLYMER MELTING……Page 428
11.6. IGNITION OF POLYMER VAPORS……Page 437
11.7. COMBUSTION OF POLYMER VAPORS……Page 455
11.7.2. Fire Properties of Polymers……Page 457
11.7.3. Heat Flux……Page 478
11.8. FIRE PROPAGATION……Page 481
11.8.2. UL 94 Standard Test Methodology for Flammability of Plastic Materials for Parts in Devices and Appliances [24]……Page 484
11.8.3. ASTM D 2863-70 Test Methodology for Limited Oxygen Index of Materials [65]……Page 485
11.8.4. ASTM E162-98 (Also D3675-98): Standard Test Method for Surface Flammability of Materials Using a Radiant Energy Source [67]……Page 487
11.8.5. ASTM E84-00a (NFPA 255) Standard Test Method for Surface Burning Characteristics of Building Materials [71]……Page 488
11.8.6. ASTM E648-99 (NFPA 253) Standard Test Method for Critical Radiant Flux of Floor- Covering Systems Using a Radiant Heat Energy Source [73]……Page 492
11.8.7. ASTM E1321 Standard Test Method for Determining Material Ignition and Flame Spread Properties (Lateral Ignition and Flame Spread Test, LIFT) [38]……Page 493
11.8.8. Clean Room Flammability Standard for The Semiconductor Industry (NFPA 318 [77] FMR 4910 Test Standard [78] and UL 2360 Test Standard [79])……Page 494
REFERENCES……Page 502
NOMENCLATURE……Page 506
12.1. INTRODUCTION……Page 511
12.2. DEFINITIONS……Page 513
12.3. OPPORTUNITIES FOR BIODEGRADABLE WATER-SOLUBLE POLYMERS……Page 515
12.4. TEST METHODS FOR BIODEGRADABLE WATER-SOLUBLE POLYMERS……Page 517
12.5.1. Carbon Chain Polymers……Page 519
12.5.2. Heteroatom Chain Polymers……Page 525
12.6. MODIFIED NATURAL POLYMERS……Page 529
12.6.2. Chemical Modification of Polysaccharides……Page 530
REFERENCES……Page 533
PART 4……Page 541
13.1. INTRODUCTION: WHAT IS SUSTAINABILITY……Page 543
13.2.1. Production of Polymers……Page 544
13.2.2. Use of Plastics— Examples for Saving Total Primary Energy Demand……Page 545
13.3. POLYMER RECYCLING AND SUSTAINABILITY……Page 550
13.3.1. Environmental Aspects……Page 551
13.3.2. Correlation of Ecological and Economic Aspects of Sustainability……Page 572
13.4. CONCLUSIONS……Page 580
REFERENCES……Page 581
14.1. INTRODUCTION……Page 583
14.2. BASIC PLASTICS RECYCLING DEFINITIONS AND NOMENCLATURE……Page 584
14.3. POLYMER RECOVERY, RECYCLING, RESOURCE CONSERVATION, AND INTEGRATED RESOURCE MANAGEMENT AS GLOBAL CONCEPTS……Page 586
14.4. EARLY HISTORY OF PLASTICS RECYCLING (PRE-1990)……Page 587
14.5. POLYMER RECYCLING STATISTICS 14.5.1. Plastics Recovery in the United States……Page 589
14.5.2. Plastics Recovery in Europe……Page 591
14.5.3. Plastics Recovery in Japan……Page 592
14.5.4. Rubber and Elastomer Recovery……Page 593
14.6. MARKING OF PLASTIC PACKAGES AND PRODUCTS 14.6.1. Physical Marking……Page 594
14.7. COLLECTION OF PLASTICS FOR RECYCLING 14.7.1. Consumer Packaging……Page 597
14.7.2. Consumer Electronics……Page 599
14.7.4. End-of-Life Vehicles……Page 601
14.8. OVERVIEW OF PLASTICS RECYCLING TECHNOLOGY 14.8.1. Coarse Manual Sorting……Page 603
14.8.2. Automated and Semiautomated Plastics Identification Technologies……Page 604
14.8.3. Identification of Additives……Page 607
14.8.4. Automated Sorting of Plastic Bottles and Electronic Parts Using NIR……Page 608
14.8.5. Mechanical Recycling……Page 610
14.8.6. Selective Dissolution……Page 628
14.8.9. Final QC……Page 630
14.8.10. Feedstock/Chemical Recycling……Page 631
14.8.12. Energy Recovery and Fuel Recovery……Page 635
14.9. LOOKING AHEAD……Page 637
Other Associations/Organizations Active in Plastics Recycling……Page 638
Directories of Plastics Recyclers and Recycled Plastic Product Manufacturers……Page 639
REFERENCES……Page 640
15.1. INTRODUCTION……Page 649
15.2. MAGNITUDE OF THE GENERAL INCINERATION PROBLEM……Page 650
15.3. SOURCES, DISPOSAL, AND RECYCLING OF PLASTIC AND OTHER WASTES 15.3.1. The Problem……Page 654
15.3.2. Waste Disposal Options……Page 655
15.3.3. Thermal Destruction (Incineration) of Wastes……Page 657
15.3.4. Diagnostic Tools……Page 658
15.3.5. The Combustion Aerodynamic Problem……Page 659
15.3.6. Computational Problem of Turbulent Reacting Flows……Page 660
15.4.2. The Problem……Page 661
15.4.3. Experimental Facility and Methodology……Page 663
15.4.4. Some Results……Page 666
15.5. THERMAL DESTRUCTION OF PLASTIC AND NONPLASTIC SOLID WASTE 15.5.1. Preamble……Page 675
15.5.2. The Problem……Page 676
15.5.3. Experimental Facility and Methodology……Page 677
15.5.4. Some Results……Page 679
15.5.5. Closure……Page 692
15.6. THERMAL DESTRUCTION OF POLYPROPYLENE, POLYSTYRENE, POLYETHYLENE, AND POLYVINYL CHLORIDE 15.6.1. Preamble……Page 693
15.6.2. The Problem……Page 694
15.6.3. Experimental Procedure……Page 695
15.6.4. Determination of Some Important Parameters……Page 696
15.6.5. Some Results……Page 700
15.6.6. Closure……Page 712
15.7. PROSPECTS, CHALLENGES, AND OPPORTUNITIES FOR ENERGY RECOVERY FROM WASTES……Page 713
REFERENCES……Page 714
16.1. INTRODUCTION……Page 717
16.2. TEXTILE WASTE AND RECYCLING……Page 718
16.3. CARPET WASTE AND COMPOSITION……Page 719
16.4.1. Depolymerization of Nylons……Page 721
16.4.3. Mechanical Separation of Polymers from Carpet……Page 728
16.4.4. Physical/Chemical Separation of Polymers from Carpet……Page 729
16.4.5. Plastic Resin Compounds from Waste……Page 730
16.4.6. Use of Recycled Polymers in Glass-Fiber-Reinforced Composites……Page 732
16.4.7. Polymer Composites Utilizing Waste Fibers as Reinforcement……Page 734
16.4.8. Waste Fibers as Reinforcement in Concrete and Soil……Page 735
16.4.9. Waste to Energy Conversion……Page 739
16.4.10. Carpet Redesign and Reuse……Page 740
REFERENCES……Page 741
17.1. INTRODUCTION……Page 747
17.2. GENERAL ENVIRONMENTAL IMPACTS……Page 750
17.3.1. Plastics Used in the Interior of Vehicles……Page 751
17.3.2. Plastics Used on the Exterior of Vehicle……Page 757
17.3.3. Underhood Polymers……Page 761
17.3.4. Chassis Polymers……Page 763
17.4. SUMMARY……Page 764
REFERENCES……Page 765
A……Page 767
B……Page 768
C……Page 769
E……Page 770
F……Page 771
H……Page 772
K,L……Page 773
N……Page 774
P……Page 775
Q,R……Page 778
S……Page 779
T……Page 780
V……Page 781
X,Y……Page 782
Back Page……Page 783
Reviews
There are no reviews yet.