Lie Algebras, Part 2: Finite and Infinite Dimensional Lie Algebras and Applications in Physics

Free Download

E.A. de Kerf, G.G.A. Bäuerle, A.P.E. ten Kroode0444828362, 9780444828361

This is the long awaited follow-up to Lie Algebras, Part I which covered a major part of the theory of Kac-Moody algebras, stressing primarily their mathematical structure. Part II deals mainly with the representations and applications of Lie Algebras and contains many cross references to Part I. The theoretical part largely deals with the representation theory of Lie algebras with a triangular decomposition, of which Kac-Moody algebras and the Virasoro algebra are prime examples. After setting up the general framework of highest weight representations, the book continues to treat topics as the Casimir operator and the Weyl-Kac character formula, which are specific for Kac-Moody algebras. The applications have a wide range. First, the book contains an exposition on the role of finite-dimensional semisimple Lie algebras and their representations in the standard and grand unified models of elementary particle physics. A second application is in the realm of soliton equations and their infinite-dimensional symmetry groups and algebras. The book concludes with a chapter on conformal field theory and the importance of the Virasoro and Kac-Moody algebras therein.

Reviews

There are no reviews yet.

Be the first to review “Lie Algebras, Part 2: Finite and Infinite Dimensional Lie Algebras and Applications in Physics”
Shopping Cart
Scroll to Top