Surface Enhanced Raman Scattering: Physics and Applications

Free Download

Authors:

Edition: 1

Series: Topics in Applied Physics

ISBN: 9783540335665, 3-540-33566-8

Size: 12 MB (12654494 bytes)

Pages: 500/500

File format:

Language:

Publishing Year:

Category:

Katrin Kneipp, Martin Moskovits, Harald Kneipp9783540335665, 3-540-33566-8

Almost 30 years after the first reports on surface-enhanced Raman signals, the phenomenon of surface-enhanced Raman scattering (SERS) is now well established. Yet, explaining the enhancement of a spectroscopic signal by fouteen orders of magnitude continues to attract the attention of physicists and chemists alike. And, at the same time and rapidly growing, SERS is becoming a very useful spectroscopic tool with exciting applications in many fields. SERS gained particular interest after single-molecule Raman spectroscopy had been demonstrated. This bookl summarizes and discusses present theoretical approaches that explain the phenomenon of SERS and reports on new and exciting experiments and applications of the fascinating spectroscopic effect.

Table of contents :
front-matter.pdf……Page 1
Introduction……Page 17
The Electromagnetic Theory of SERS……Page 18
Assemblies of Interacting Nanostructures: The Ubiquitous SERS-Active Systems……Page 23
Possible Extensions of the Electromagnetic Model……Page 29
Conclusions……Page 30
References……Page 31
Index……Page 34
Introduction……Page 35
Electromagnetic Mechanism of SERS……Page 37
Numerical Methods for Calculating Electromagnetic Enhancement Factors……Page 38
Results of EM Calculations……Page 39
Long-Range Electromagnetic Enhancement Effects……Page 41
Electronic-Structure Studies……Page 44
SERS Excitation Spectroscopy as a Probeof the Electromagnetic Mechanism……Page 47
Conclusions……Page 57
References……Page 58
Index……Page 62
Introduction……Page 63
Spectral Expansion of Local Fields and Green’s Function……Page 65
SERS Enhancement Factor in Green’s Function Theory……Page 71
Numerical Computations and Results……Page 73
SERS Enhancement in Fractals in Dipolar Approximation……Page 74
Single-Molecule SERS in Random Systems……Page 75
Single-Molecule SERS in Nanosphere Nanolens……Page 78
References……Page 80
Index……Page 82
Introduction……Page 83
Methods……Page 84
Single Nanoparticles and Dimers……Page 87
Particle Arrays……Page 90
Chains Perpendicular to the Wavevector……Page 92
Chains Parallel to the Wavevector……Page 95
Configurations that Combine Parallel and Perpendicular Chains……Page 98
References……Page 99
Index……Page 103
Electromagnetic Enhancement……Page 104
Generalized Mie Theory……Page 106
The Recursive Order-of-Scattering Method……Page 107
“Hot Sites” Between Metal Particles……Page 109
Polarization Anisotropy……Page 112
Comparisons between Near-Field and Far-Field Spectra……Page 114
Including Molecular Quantum Dynamics into the EM SERS Theory……Page 116
Optical Forces……Page 117
References……Page 119
Index……Page 121
Introduction……Page 122
Description of the Model: A Molecule Closeto a Complex-Shaped Nanoparticle……Page 123
The Calculation of Surface-Enhanced Raman Spectra……Page 124
Enhanced Scattering Cross Section……Page 125
Extending the Model to Metal-Particle Aggregates……Page 127
Hot Spots and Aggregate Size……Page 130
SEIRA……Page 133
Molecular Fluorescence……Page 137
Summary and Perspectives……Page 138
References……Page 140
Index……Page 142
Introduction……Page 143
The Electronic Structure and Dielectric Constantsof Transition Metals……Page 146
Theoretical Simulation of the Local Electric Field by the Finite Difference Time-Domain Method……Page 148
3D-FDTD Simulation of the Electromagnetic Field Distribution over a Cauliflower-Like Nanostructure……Page 151
3D-FDTD Simulation of the Electromagnetic Field Distribution over a Nanocube Dimer……Page 153
3D-FDTD Simulation of Electromagnetic-Field Enhancement of Core-Shell Nanoparticles……Page 154
SERS From Transition Metals with Ultraviolet Excitation……Page 156
Potential-Dependent UV-Raman Spectra from Transition Metals……Page 157
Confirmation of UV-SERS Effect on Transition Metals……Page 159
Conclusion……Page 160
References……Page 161
Index……Page 165
Introduction……Page 166
Long-Range Electromagnetic (em)-Enhancement Gem and “Chemical”, “First-Layer”-Enhancement Gfirst layer of Various Ag Samples……Page 168
The Electronic Origin of the “First-Layer Effect” of SERS……Page 173
The Raman-Continuum of Electron–Hole-Pair Excitations……Page 175
SERS-Active Sites……Page 177
Theory of SERS-Active Sites……Page 180
The Story of “Missing NO”……Page 184
EM Enhancement in Single-Molecule SERS of Dyesin Langmuir–Blodgett Films……Page 187
Conjectures on SM SERS in Junction Sites……Page 189
Special Examples of SERS at Low Coverageof Small Silver Aggregates……Page 192
References……Page 199
Index……Page 203
Introduction……Page 204
SERS Vibrational Pumping……Page 205
Pumped Anti-Stokes SERS — A Two-Photon Raman Effect……Page 210
SEHRS Enhancement Factors……Page 211
Resonant and Nonresonant Surface-Enhanced Hyper-Raman Scattering……Page 212
Summary and Conclusion……Page 214
References……Page 216
Index……Page 217
Introduction……Page 218
SERRS of Thin Solid Films and Langmuir–Blodgett Monolayers……Page 222
Spatial Spectroscopic Tuning……Page 224
SERRS Mapping and Imaging……Page 225
Single-Molecule SERRS from Langmuir–Blodgett Monolayers……Page 227
SERRS from Colloids and Nanocomposite Films……Page 228
SERRS from Ag and Au Metal Colloids……Page 229
SERRS from Silver Nanowire Layer-by-Layer Film Substrates……Page 231
SEF of LB……Page 234
References……Page 235
Index……Page 238
Introduction……Page 239
Remarks on SERRS……Page 242
Initial Steps in TERS……Page 243
Towards Higher Efficiencies in TERS……Page 251
References……Page 261
Index……Page 264
Introduction……Page 265
Instrumentation……Page 266
TERS from Single-Wall Carbon Nanotube……Page 268
TERS Measurements on Rhodamine 6G……Page 272
Tip Force on DNA-Based Adenine Molecules……Page 274
TERS from Adenine……Page 275
TERS from Tip-Pressurized Adenine Molecules……Page 276
Tip-Enhanced Coherent Anti-Stokes Raman Scattering……Page 278
References……Page 284
Index……Page 286
Introduction……Page 287
Single-Molecule SERS Experiments……Page 289
Single-Molecule SERS on Silver and Gold Nanoclusters in Solution……Page 290
Single-Molecule SERS on Fixed Fractal Silver and Gold Cluster Structures……Page 293
SERS as a Single-Molecule Analytical Tool — Comparison between SERS and Fluorescence……Page 297
Potential Applications of Single-Molecule Raman Spectroscopy……Page 298
Conclusion……Page 300
References……Page 301
Index……Page 304
Introduction……Page 305
Materials and Methods……Page 306
Fluctuations in SM SERS Spectra……Page 308
Statistical Analysis of Intensity Fluctuations in SM SERS Spectra……Page 309
ET in SM SERS Spectra of FePP……Page 313
Lévy Statistics in SM SERS Spectra of FePP……Page 316
Conclusions and Perspectives……Page 319
References……Page 320
Index……Page 323
Introduction……Page 324
Sample Preparation for SM-SERRS Measurements……Page 325
Autocorrelation Analysis……Page 326
Single EGFP Molecules Detected by SERRS……Page 327
SM-SERRS Spectra of EGFP……Page 328
Discussion on the Spectral Jumps Observed in the SM-SERRS Spectra of EGFP……Page 331
The Relation between the Fluorescence and SERRS Intensity Trajectories of EGFP……Page 334
Summary……Page 337
References……Page 338
Index……Page 340
Introduction……Page 341
Protein Immobilization on SER/SEIRA Active Metal Electrodes……Page 342
Surface-Enhanced Vibrational Spectroelectrochemistry of Heme Proteins……Page 344
Theoretical Description and Experimental Determination of the Electric-Field……Page 348
Conformational Changes of Cytochrome c……Page 349
Modulation of Redox Potentials……Page 351
Electron-Transfer Dynamics of Cytochrome c and Other Soluble Electron Carriers……Page 354
Electric-Field Effects on the Electroprotonic Energy Transduction of Heme-Cu Oxidases……Page 357
Concluding Remarks……Page 359
References……Page 361
Index……Page 364
Raman Spectra from Biological Samples……Page 365
Advantages of SERS for Studies in Cells……Page 366
SERS Nanosensors in Endosomal Structures……Page 368
Gold Nanoparticles and the Cellular Environment……Page 371
Characterization of the SERS Label……Page 372
Application of ICG-SERS Nanoprobes in Living Cells……Page 374
Conclusions and Outlook……Page 375
References……Page 378
Index……Page 380
Introduction……Page 381
Adaptive Plasmonic Nanostructures……Page 382
SERS Features of Conformational States: Insulin……Page 384
SERS Versus Normal Raman……Page 385
Human Insulin Versus Insulin Lispro……Page 387
Ebola Virus after Pseudotyping……Page 389
Tag-Free Antibody–Antigen Binding Detection……Page 390
Protein-Binding Detection with Dye Displacement……Page 393
References……Page 395
Index……Page 397
Introduction……Page 398
SERS of Glucose……Page 402
Reversibility and Real-Time Glucose Sensing……Page 403
Quantitative Aspects of Glucose Sensing with SERS……Page 404
Temporal Stability of the SERS Glucose Sensor……Page 407
Conclusions……Page 408
References……Page 409
Index……Page 410
Introduction……Page 411
Choice of Wavelength……Page 413
Choice of Analytes……Page 416
Choice of Substrates……Page 419
DNA……Page 420
Mitoxantrone……Page 421
Drugs of Abuse……Page 423
Derivatization Assays……Page 424
Analysis Using Individual Nanoparticles……Page 425
References……Page 426
Index……Page 427
Introduction……Page 428
Spectroscopic Characterization of Micro-Organisms……Page 429
Introduction to Multivariate Cluster Analysis……Page 431
Monitoring Industrial Bioprocesses……Page 433
Gene-Function Analysis……Page 436
Concluding Remarks……Page 437
References……Page 438
Index……Page 440
Introduction……Page 441
Silver Nanoparticle Island Films for Biomedical Diagnostics……Page 443
Silver Nanoparticles for Cellular Imaging……Page 444
SERS Instrumentation……Page 445
SERS Gene Probe for Medical Diagnostics……Page 447
Hyperspectral Imaging of Raman Dye-Labeled Silver Nanoparticles in Single Cells……Page 449
SERS Near-Field Scanning Optical Microscopy (SERS-NSOM)……Page 451
SERS Molecular Sentinels……Page 453
References……Page 457
Index……Page 459
Introduction……Page 460
Preparation of Capture Antibody Substrates……Page 462
ERL Preparation……Page 465
Spectroscopic Instrumentation……Page 467
Maximization of Signal Strength……Page 468
Early Disease Detection……Page 470
Assay of Erwinia Herbicola (BW Stimulant)……Page 472
Single E. coli O157:H7 SERS……Page 473
Assay of PPV……Page 475
References……Page 477
Index……Page 480
Introduction……Page 481
Experimental……Page 482
Cyanide……Page 483
HD and CEES……Page 485
GB……Page 488
VX……Page 490
Conclusions……Page 492
References……Page 493
Index……Page 495
back-matter.pdf……Page 496

Reviews

There are no reviews yet.

Be the first to review “Surface Enhanced Raman Scattering: Physics and Applications”
Shopping Cart
Scroll to Top