Mendel J.
Л fuzzy logic system (FLS) is unique in that it is able to simultaneously handle numerical data and linguistic knowledge. It is a nonlinear mapping of an input data (feature) vector into a scalar output, i.e., it maps numbers into numbers. Fuzzy set theory and fuzzy logic establish the specifics of the nonlinear mapping. This tutorial paper provides a guided tour through those aspects of fuzzy sets and fuzzy logic that are necessary to synthesize a FLS. It does this by starting with crisp set theory and dual logic and demonstrating how both can be extended to their fuzzy counterparts. Because engineering systems are, for the most part, causal, we impose causality as a constraint on the development of the FLS. Doing this lets us steer down a very special and widely used tributary of the FL literature, one that is valuable for engineering applications of FL but may not be as valuable for nonengineering applications.After synthesizing a FLS, we demonstrate that it can be expressed mathematically as a linear combination of fuzzy basis functions, and is a nonlinear universal function approximator, a property that it shares with feedforward neural networks. The fuzzy basis function expansion is very powerful because its basis functions can be derived from either numerical data or linguistic knowledge, both of which can be cast into the forms of IF-THEN rules. To date, a FLS is the only approximation method that is able to incorporate both types of knowledge in a unified mathematical manner. | |
Reviews
There are no reviews yet.