Adrian Bejan, Allan D. Kraus9780471390152, 0-471-39015-1
Table of contents :
Front Matter……Page 1
Preface……Page 4
Author Index……Page 0
Author Index……Page 9
Table of Contents……Page 34
1. Basic Concepts……Page 36
One-Dimensional Conduction with Internal Heat Generation……Page 37
1.1.4 Interface-Contact Resistance……Page 39
Heat Transfer Coefficient……Page 42
Natural Convection……Page 43
Forced Convection……Page 44
1.1.9 Flow Resistance……Page 46
1.2 Coordinate Systems……Page 47
1.2.2 Cylindrical Coordinate System……Page 49
1.2.3 Spherical Coordinate System……Page 50
1.3 Continuity Equation……Page 51
1.4 Momentum and the Momentum Theorem……Page 54
1.5 Conservation of Energy……Page 58
1.6 Dimensional Analysis……Page 65
1.6.1 Friction Loss in Pipe Flow……Page 66
1.6.2 Summary of Dimensionless Groups……Page 68
1.7 Units……Page 69
1.7.1 SI System (Syst`eme International d’Unit´es)……Page 70
1.7.2 English Engineering System (U.S. Customary System)……Page 71
1.7.3 Conversion Factors……Page 72
Nomenclature……Page 73
References……Page 76
2. Thermophysical Properties of Fluids and Materials……Page 78
2.1 Introduction……Page 79
2.2.1 Thermodynamic Properties……Page 81
Equation of State……Page 83
Calculation of Properties……Page 147
Thermodynamic Properties of Mixtures……Page 148
Extended Corresponding States……Page 149
Dilute-Gas Contributions……Page 150
Density-Dependent Contributions……Page 151
Transport Properties of Mixtures……Page 152
2.3 Thermophysical Properties of Solids……Page 153
2.3.1 Conservation of Energy……Page 154
2.3.2 Behavior of Thermophysical Properties of Solids……Page 155
2.3.3 Property Values of Solid Materials……Page 156
Thermal Conductivity……Page 157
Thermal Expansion……Page 175
Nomenclature……Page 176
References……Page 177
Graphs of Thermophysical Properties……Page 184
3. Conduction Heat Transfer……Page 195
3.2.1 Fourier’s Law……Page 198
3.2.3 Boundary and Initial Conditions……Page 199
3.3.1 Error Functions……Page 201
3.3.2 Gamma Function……Page 202
3.3.3 Beta Functions……Page 203
3.3.5 Bessel Functions……Page 206
3.3.6 Legendre Functions……Page 211
3.4.1 Plane Wall……Page 212
3.4.2 Hollow Cylinder……Page 214
3.4.3 Hollow Sphere……Page 215
3.4.4 Thermal Resistance……Page 216
Composite Plane Wall……Page 217
Composite Hollow Cylinder……Page 219
Composite Hollow Sphere……Page 220
3.4.6 Contact Conductance……Page 221
3.4.8 Effect of Uniform Internal Energy Generation……Page 222
Plane Wall……Page 223
Hollow Cylinder……Page 224
Solid Cylinder……Page 225
Hollow Sphere……Page 226
Solid Sphere……Page 227
Plane Wall……Page 228
Hollow Cylinder……Page 229
Plane Wall……Page 230
Hollow Sphere……Page 231
Plane Wall……Page 232
3.5.4 Temperature-Dependent Energy Generation……Page 233
Solid Sphere……Page 234
3.6 Extended Surfaces……Page 235
Rectangular Fin……Page 236
Concave Parabolic Fin……Page 239
Rectangular Fin……Page 240
3.6.3 Convecting Spines……Page 242
Concave Parabolic Spine……Page 243
Convex Parabolic Spine……Page 244
3.6.4 Longitudinal Radiating Fins……Page 245
3.6.6 Optimum Dimensions of Convecting Fins and Spines……Page 246
Concave Parabolic Fin……Page 247
Concave Parabolic Spine……Page 248
3.7 Two-Dimensional Steady Conduction……Page 249
3.7.1 Rectangular Plate with Specified Boundary Temperatures……Page 250
3.7.2 Solid Cylinder with Surface Convection……Page 251
3.7.3 Solid Hemisphere with Specified Base and Surface Temperatures……Page 253
3.7.4 Method of Superposition……Page 255
3.7.5 Conduction Shape Factor Method……Page 256
Cartesian Coordinates……Page 257
Cylindrical Coordinates……Page 259
3.8.1 Lumped Thermal Capacity Model……Page 263
Pure Radiation Cooling……Page 264
Heat Capacity of the Coolant Pool……Page 265
Specified Surface Temperature……Page 266
Surface Convection……Page 267
Constant Surface Heat Flux and Exponentially Decaying Energy Generation……Page 268
3.8.3 Finite-Sized Solid Model……Page 269
Explicit Method……Page 270
Other Methods……Page 272
3.9.2 Semi-infinite Solid with Periodic Surface Temperature……Page 273
3.9.4 Semi-infinite Solid with Periodic Ambient Temperature……Page 274
3.9.5 Finite Plane Wall with Periodic Surface Temperature……Page 275
3.9.6 Infinitely Long Semi-infinite Hollow Cylinder with Periodic Surface Temperature……Page 276
3.10.1 One-Region Neumann Problem……Page 277
3.10.2 Two-Region Neumann Problem……Page 279
3.10.4 Exact Solutions in Cylindrical Freezing……Page 281
Outward Cylindrical Freezing……Page 284
Inward Cylindrical Freezing……Page 285
Outward Spherical Freezing……Page 286
Other Approximate Solutions……Page 287
3.11 Contemporary Topics……Page 288
Nomenclature……Page 289
References……Page 291
4. Thermal Spreading and Contact Resistances……Page 295
4.1.1 Types of Joints or Interfaces……Page 298
4.1.2 Conforming Rough Solids……Page 300
4.1.3 Nonconforming Smooth Solids……Page 301
4.1.5 Single Layer between Two Conforming Rough Solids……Page 302
4.1.6 Parameters Influencing Contact Resistance or Conductance……Page 303
4.2.1 Spreading and Constriction Resistances in a Half-Space……Page 304
4.2.2 Spreading and Constriction Resistances in Flux Tubes and Channels……Page 306
Isothermal Circular Source……Page 308
Isoflux Circular Source……Page 309
4.3.3 Spreading Resistance of an Isothermal Elliptical Source Area on a Half-Space……Page 311
4.3.5 Approximations for Dimensionless Spreading Resistance……Page 313
4.4.1 Isoflux Rectangular Area……Page 314
4.4.3 Isoflux Regular Polygonal Area……Page 315
4.4.4 Arbitrary Singly Connected Area……Page 316
Isothermal Circular Annulus……Page 317
Effect of Contact Conductance on Spreading Resistance……Page 318
4.5.1 Isoflux Circular Area……Page 319
4.5.2 Isoflux Hyperellipse……Page 320
4.5.3 Isoflux Regular Polygons……Page 321
4.6 Spreading Resistance Within a Compound Disk with Conductance……Page 322
4.6.4 Isotropic Finite Disk with Conductance……Page 325
4.7.1 Correlation Equations……Page 328
Equivalent Isothermal Circular Contact……Page 329
4.7.3 Isoflux Circular Contact……Page 330
Equivalent Isothermal Contact Area……Page 331
4.8 Circular Area on a Semi-Infinite Flux Tube……Page 332
4.8.1 General Expression for a Circular Contact Area with Arbitrary Flux on a Circular Flux Tube……Page 333
Asymptotic Values for Dimensionless Spreading Resistances……Page 334
Simple Correlation Equations……Page 335
4.9 Multiple Layers on a Circular Flux Tube……Page 336
4.10 Spreading Resistance in Compound Rectangular Channels……Page 338
4.10.3 Spreading Resistance of a Rectangle on an Isotropic Half-Space……Page 343
4.11 Strip on a Finite Channel with Cooling……Page 344
4.12.2 Spreading Resistance for an Abrupt Change in the Cross Section……Page 346
4.13.2 Isotropic Semi-infinite Two-Dimensional Channel……Page 347
4.14 Spreading Resistance of an Eccentric Rectangular Area on a Rectangular Plate with Cooling……Page 348
4.14.1 Single Eccentric Area on a Compound Rectangular Plate……Page 350
4.14.2 Multiple Rectangular Heat Sources on an Isotropic Plate……Page 351
4.15 Joint Resistances of Nonconforming Smooth Solids……Page 352
Semiaxes of an Elliptical Contact Area……Page 353
4.15.2 Local Gap Thickness……Page 356
4.15.3 Contact Resistance of Isothermal Elliptical Contact Areas……Page 357
4.15.4 Elastogap Resistance Model……Page 358
4.15.5 Joint Radiative Resistance……Page 360
4.15.6 Joint Resistance of Sphere-Flat Contact……Page 361
Effect of Gas Pressure on Joint Resistance……Page 362
4.15.7 Joint Resistance of a Sphere and a Layered Substrate……Page 363
4.15.8 Joint Resistance of Elastic-Plastic Contacts of Hemispheres and Flat Surfaces in a Vacuum……Page 367
Alternative Constriction Parameter for a Hemisphere……Page 368
Contact Strip and Local Gap Thickness……Page 370
Contact Resistance at a Line Contact……Page 371
Gap Resistance at a Line Contact……Page 372
Joint Resistance of Nonconforming Rough Surfaces……Page 373
4.16 Conforming Rough Surface Models……Page 374
4.16.1 Plastic Contact Model……Page 376
Relative Contact Pressure……Page 379
Dimensionless Contact Conductance: Plastic Deformation……Page 380
4.16.2 Radiation Resistance and Conductance for Conforming Rough Surfaces……Page 381
Elastic Contact Geometric Parameters……Page 383
Correlation Equations for Surface Parameters……Page 384
4.16.4 Conforming Rough Surface Model: Elastic-Plastic Deformation……Page 385
Correlation Equations for Dimensionless Contact Conductance: Elastic- Plastic Model……Page 386
4.16.5 Gap Conductance for Large Parallel Isothermal Plates……Page 387
4.16.6 Gap Conductance for Joints between Conforming Rough Surfaces……Page 389
4.16.7 Joint Conductance for Conforming Rough Surfaces……Page 393
4.17 Joint Conductance Enhancement Methods……Page 395
Mechanical Model……Page 397
Thermal Model……Page 398
4.17.2 Ranking Metallic Coating Performance……Page 405
4.17.3 Elastomeric Inserts……Page 406
4.17.4 Thermal Greases and Pastes……Page 408
4.17.5 Phase-Change Materials……Page 411
Nomenclature……Page 412
References……Page 419
5.1 Introduction……Page 428
5.2.1 Flow Entrance Region……Page 429
5.2.2 Fully Developed Flow Region……Page 432
5.2.3 Hydraulic Diameter and Pressure Drop……Page 434
5.3.1 Mean Temperature……Page 437
5.3.2 Thermally Fully Developed Flow……Page 438
5.4.1 Thermal Entrance Region……Page 440
5.4.2 Thermally Developing Hagen-Poiseuille Flow……Page 441
5.4.3 Thermally and Hydraulically Developing Flow……Page 445
5.5 Optimal Channel Sizes for Laminar Flow……Page 446
5.6.1 Time-Averaged Equations……Page 452
5.6.2 Fully Developed Flow……Page 453
5.6.3 Heat Transfer in Fully Developed Flow……Page 456
5.7 Total Heat Transfer Rate……Page 458
5.7.1 Isothermal Wall……Page 459
5.9 Summary of Forced Convection Relationships……Page 460
Nomenclature……Page 467
References……Page 469
6. Forced Convection: External Flows……Page 472
6.2 Morphology of External Flow Heat Transfer……Page 473
6.3 Analysis of External Flow Heat Transfer……Page 478
6.4.1 High Reynolds Number Flow over a Wedge……Page 479
6.4.2 Similarity Transformation Technique for Laminar Boundary Layer Flow……Page 485
6.4.4 Similarity Solutions for a Wedge……Page 489
Wedge Flow Limits……Page 491
6.4.5 Prandtl Number Effect……Page 492
6.4.6 Incompressible Flow Past a Flat Plate with Viscous Dissipation……Page 494
6.4.7 Integral Solutions for a Flat Plate Boundary Layer with Unheated Starting Length……Page 496
Arbitrarily Varying Surface Temperature……Page 498
6.4.9 Smith-Spalding Integral Method……Page 499
6.4.11 Heat Transfer in a Turbulent Boundary Layer……Page 502
Axisymmetric Flows……Page 503
Analogy Solutions……Page 504
6.4.13 Near-Wall Region in Turbulent Flow……Page 505
6.4.14 Analogy Solutions for Boundary Layer Flow……Page 508
Three-Layer Model for a “Physical Situation”……Page 509
Flat Plate with an Unheated Starting Length in Turbulent Flow……Page 512
Turbulent Prandtl Number……Page 513
6.4.15 Surface Roughness Effect……Page 514
Cylinder in Crossflow……Page 515
6.5.1 Crossflow across Tube Banks……Page 516
Stack of Parallel Plates……Page 518
Offset Strips……Page 520
6.6 Heat Transfer from Objects on a Substrate……Page 523
6.6.1 Flush-Mounted Heat Sources……Page 524
6.6.2 Two-Dimensional Block Array……Page 525
6.6.3 Isolated Blocks……Page 526
6.6.4 Block Arrays……Page 528
6.6.5 Plate Fin Heat Sinks……Page 530
6.6.6 Pin Fin Heat Sinks……Page 531
6.7.1 Thermal Transport in Jet Impingement……Page 533
6.7.2 Submerged Jets……Page 535
Average Nusselt Number for Single Jets……Page 536
Average Nusselt Number for an Array of Jets……Page 537
Free Surface Jets……Page 539
6.8 Summary of Heat Transfer Correlations……Page 541
Nomenclature……Page 548
References……Page 555
7.1 Introduction……Page 558
7.2.1 Governing Equations……Page 562
7.2.2 Common Approximations……Page 564
7.2.3 Dimensionless Parameters……Page 565
7.3.1 Vertical Surfaces……Page 566
7.3.2 Inclined and Horizontal Surfaces……Page 572
7.4.1 Horizontal Cylinder and Sphere……Page 576
7.4.2 Vertical Cylinder……Page 578
7.4.3 Transients……Page 579
7.4.4 Plumes, Wakes, and Other Free Boundary Flows……Page 581
7.5.1 Rectangular Enclosures……Page 584
7.5.2 Other Configurations……Page 587
7.6.2 Turbulence……Page 590
7.7 Empirical Correlations……Page 593
7.7.1 Vertical Flat Surfaces……Page 594
7.7.2 Inclined and Horizontal Flat Surfaces……Page 595
7.7.3 Cylinders and Spheres……Page 596
7.7.4 Enclosures……Page 598
Nomenclature……Page 599
References……Page 601
8. Thermal Radiation……Page 605
8.1 Fundamentals……Page 606
8.1.1 Emissive Power……Page 607
8.1.2 Solid Angles……Page 609
8.1.4 Radiative Heat Flux……Page 613
8.2 Radiative Properties of Solids and Liquids……Page 614
Directional Dependence……Page 618
Hemispherical Properties……Page 619
Surface Temperature Effects……Page 620
Wavelength Dependence……Page 621
Directional Dependence……Page 623
Temperature Dependence……Page 624
Surface Roughness……Page 625
Surface Layers and Oxide Films……Page 626
8.2.5 Summary……Page 628
8.3 Radiative Exchange between Surfaces……Page 630
Direct Integration……Page 632
Special Methods……Page 638
View Factor Algebra……Page 639
Crossed-Strings Method……Page 640
8.3.2 Radiative Exchange between Black Surfaces……Page 641
8.3.3 Radiative Exchange between Diffuse Gray Surfaces……Page 642
8.3.4 Radiation Shields……Page 644
Band Approximation Method……Page 646
8.4.1 Molecular Gases……Page 647
Soot……Page 651
Pulverized Coal and Fly Ash Dispersions……Page 652
8.5 Radiative Exchange Within Participating Media……Page 653
8.5.2 Diffusion Approximation……Page 655
8.5.3 P-1 Approximation……Page 657
8.5.5 Weighted Sum of Gray Gases……Page 659
Nomenclature……Page 661
References……Page 663
9. Boiling……Page 666
9.1 Introduction to Boiling Heat Transfer……Page 667
9.2 Boiling Curve……Page 668
9.3.2 Nucleation Superheat……Page 671
9.3.3 Size Range of Active Nucleation Sites……Page 675
9.3.4 Nucleation Site Density……Page 676
9.4.1 Bubble Growth……Page 677
9.4.2 Bubble Departure……Page 680
9.5 Pool Boiling Heat Transfer……Page 682
9.5.1 Nucleate Boiling Heat Transfer Mechanisms……Page 683
Bubble Agitation Correlation of Rohsenow……Page 684
Reduced Pressure Correlation of Cooper with Surface Roughness……Page 686
Fluid-Specific Correlation of Gorenflo……Page 687
9.5.3 Departure from Nucleate Pool Boiling (or Critical Heat Flux)……Page 689
9.5.4 Film Boiling and Transition Boiling……Page 691
9.7 Two-Phase Flow Patterns……Page 693
9.7.1 Flow Patterns in Vertical and Horizontal Tubes……Page 694
9.7.3 Flow Pattern Maps for Horizontal Flows……Page 697
9.8 Flow Boiling in Vertical Tubes……Page 702
9.8.1 Chen Correlation……Page 703
9.8.2 Shah Correlation……Page 704
9.8.3 Gungor-Winterton Correlation……Page 705
9.8.4 Steiner-Taborek Method……Page 706
9.9.1 Horizontal Tube Correlations Based on Vertical Tube Methods……Page 710
9.9.2 Horizontal Flow Boiling Model Based on Local Flow Regime……Page 711
9.9.3 Subcooled Boiling Heat Transfer……Page 717
9.10.1 Heat Transfer Characteristics……Page 718
9.10.3 Bundle Design Methods……Page 719
9.11.1 Introduction……Page 720
9.11.2 Thermal Nonequilibrium……Page 721
9.11.3 Heat Transfer Mechanisms……Page 724
9.11.4 Inverted Annular Flow Heat Transfer……Page 725
9.11.5 Mist Flow Heat Transfer……Page 726
9.12.1 Vapor-Liquid Equilibria and Properties……Page 730
9.12.2 Nucleate Boiling of Mixtures……Page 731
9.12.3 Flow Boiling of Mixtures……Page 732
9.12.4 Evaporation of Refrigerant-Oil Mixtures……Page 733
9.13.1 Enhancement of Nucleate Pool Boiling……Page 735
9.13.2 Enhancement of Internal Convective Boiling……Page 737
Nomenclature……Page 739
References……Page 745
10. Condensation……Page 749
10.1 Introduction……Page 750
10.2.1 Nusselt’s Analysis of a Vertical Flat Plate……Page 751
10.3.1 Introduction……Page 753
10.3.2 Surface Tension Pressure Gradient……Page 754
10.3.3 Specified Interfaces……Page 755
10.4.1 Introduction……Page 757
10.4.2 Trapezoidal Fin Tubes……Page 758
10.4.3 Sawtooth Fin Condensing Tubes……Page 760
10.5.1 Introduction……Page 762
10.5.3 In-Tube EHD Condensation……Page 763
10.6.1 Introduction……Page 765
Flow Regimes in Horizontal Two-Phase Flow……Page 766
Effects of Mass Flux and Quality……Page 767
Effects of Fluid Properties and Tube Diameter……Page 768
Flow Regime Mapping……Page 769
Comparison of Flow Regime Maps……Page 772
Effects of Mass Flux and Quality……Page 779
Effects of Temperature Difference……Page 780
Gravity-Driven Condensation……Page 781
Shear-Driven Annular Flow Condensation……Page 786
Comparison of Heat Transfer Correlations……Page 789
10.6.4 Pressure Drop……Page 791
10.6.6 Condensation of Zeotropes……Page 792
10.6.7 Inclined and Vertical Tubes……Page 793
10.7.1 Micron Tubes……Page 794
10.7.2 Microfin Tube Pressure Drop……Page 796
10.7.3 Twisted-Tape Inserts……Page 797
10.8 Film Condensation on Tube Bundles……Page 799
Tube-Side Flow and Temperature Maldistribution……Page 800
Condenser Sizing Methods……Page 801
Noncondensable Gas Management and Proper Venting Techniques……Page 804
Noncondensable Gas Pockets……Page 809
10.9.2 Steam Condensation Heat Transfer……Page 810
10.9.3 Effect of Inclination on Heat Transfer Performance……Page 812
10.9.4 Effect of Inclination on Pressure Drop……Page 813
Appendix A……Page 814
Nomenclature……Page 815
References……Page 819
11. Heat Exchangers……Page 827
11.1 Introduction……Page 828
11.2.1 Introduction……Page 829
11.2.2 Exchanger Surface Area……Page 830
11.2.3 Overall Heat Transfer Coefficient……Page 832
11.2.4 Logarithmic Mean Temperature Difference……Page 834
11.3.1 Logarithmic Mean Temperature Difference Correction Factor Method……Page 835
11.3.2 Epsilon-Ntu Method……Page 837
Specific Epsilon-Ntu Relationships……Page 839
11.3.3 P-Ntu,c Method……Page 847
11.3.4 Y-P Method……Page 849
11.3.6 Summary of Working Relationships……Page 851
11.4.1 Construction……Page 852
Shell Side……Page 855
Tube Side……Page 859
Shell Side……Page 862
Tube Side……Page 866
Shell Side……Page 868
11.5.1 Introduction……Page 872
11.5.2 Classification of Compact Heat Exchangers……Page 874
11.5.3 Geometrical Factors and Physical Data……Page 877
Heat Transfer Data……Page 880
Flow Friction Data……Page 886
11.6.1 Introduction……Page 887
Extruded Fins……Page 890
11.6.3 Overall Heat Transfer Coefficient Revisited……Page 891
11.6.5 Pressure Loss in Pipes and Annuli……Page 894
11.6.7 Series-Parallel Arrangements……Page 895
11.7.1 Introduction……Page 898
11.7.2 Bond or Contact Resistance of High-Fin Tubes……Page 900
11.7.4 Air-Fin Coolers……Page 901
Physical Data……Page 902
Heat Transfer Correlations……Page 904
11.7.5 Pressure Loss Correlations for Staggered Tubes……Page 905
11.7.6 Overall Heat Transfer Coefficient……Page 906
11.8.1 Introduction……Page 908
11.8.2 Physical Data……Page 912
11.8.3 Heat Transfer and Pressure Loss……Page 914
11.9.2 Heat Capacity and Related Parameters……Page 916
Governing Differential Equations……Page 920
11.9.3 Epsilon-NTu Method……Page 921
11.10.1 Fouling Mechanisms……Page 923
Nomenclature……Page 924
References……Page 935
12.1.1 Measurement……Page 942
12.1.2 Sensing……Page 943
12.1.3 Calibration……Page 945
12.1.4 Readability……Page 946
12.2.1 Uncertainty: Bias and Precision Errors……Page 947
12.2.2 Mean and Deviation……Page 949
12.2.3 Error Distribution……Page 950
12.2.4 Chauvenet’s Criterion and the Chi-Square Test……Page 952
12.3 Calculation Error……Page 955
12.4 Curve Fitting……Page 956
12.5.1 Glass Thermometers……Page 960
12.5.2 Thermocouples……Page 962
12.5.3 Resistance Temperature Detectors……Page 969
12.5.4 Liquid Crystals……Page 971
12.5.6 Heat Flow Meters……Page 972
Nomenclature……Page 973
References……Page 975
13. Heat Transfer in Electronic Equipment……Page 976
History……Page 977
Present and Future……Page 978
Preventing Catastrophic Failure……Page 981
13.1.3 Packaging Levels……Page 982
Conduction……Page 985
Convection……Page 986
Radiation……Page 990
13.2.3 Chip Package Resistance……Page 991
External Resistance……Page 992
13.3 Length-Scale Effects on Thermophysical Properties……Page 993
13.3.1 Spreading Resistance……Page 995
Thermal Contact Resistance……Page 999
Thermal Boundary Resistance……Page 1001
Interstitial Materials……Page 1002
Thermal Conductivity of Particle-Laden Systems……Page 1004
13.3.3 First-Order Transient Effects……Page 1008
Lumped Heat Capacity……Page 1009
Chip Package Transients……Page 1010
Anisotropic Conductivity……Page 1012
Thermal Vias……Page 1016
13.4.1 Printed Circuit Boards in Natural Convection……Page 1017
13.4.2 Optimum Spacing……Page 1020
13.4.3 Printed Circuit Boards in Forced Convection……Page 1021
13.5.1 Introduction……Page 1024
13.5.2 Correlation……Page 1025
13.5.3 First-Order Trends……Page 1027
13.5.4 Figures of Merit……Page 1028
13.5.5 General Considerations for Thermal-Fluid Design……Page 1029
13.5.6 Impingement on Heat Sinks……Page 1030
13.6 Natural Convection Heat Sinks……Page 1031
13.6.1 Empirical Results……Page 1032
13.7.1 Heat Pipes and Vapor Chambers……Page 1035
13.7.2 Immersion Cooling……Page 1037
13.8 Thermoelectric Coolers……Page 1045
Nomenclature……Page 1047
References……Page 1051
14. Heat Transfer Enhancement……Page 1057
14.1 Introduction……Page 1058
14.1.1 Classification of Enhancement Techniques……Page 1059
14.1.2 Performance Evaluation Criteria……Page 1062
14.2.1 Boiling……Page 1071
14.2.2 Condensing……Page 1077
14.3.1 Single-Phase Flow……Page 1078
14.3.2 Boiling……Page 1083
14.3.3 Condensing……Page 1085
14.4.1 Single-Phase Flow……Page 1087
14.4.2 Boiling……Page 1095
14.4.3 Condensing……Page 1098
14.5.1 Single-Phase Flow……Page 1102
14.6.1 Single-Phase Flow……Page 1103
14.6.2 Boiling……Page 1110
14.6.3 Condensing……Page 1115
14.7.1 Single-Phase Flow……Page 1116
14.7.2 Boiling……Page 1119
14.8.1 Single-Phase Flow……Page 1120
14.8.2 Boiling……Page 1121
14.9 Active Techniques……Page 1125
14.10 Compound Enhancement……Page 1127
Nomenclature……Page 1129
References……Page 1132
15.1 Introduction……Page 1159
15.2 Basic Principles……Page 1160
15.2.1 Mass Conservation……Page 1161
15.2.2 Flow Models……Page 1163
15.2.3 Energy Conservation……Page 1166
15.3 Conduction……Page 1168
15.4.1 Plane Wall with Constant Temperature……Page 1169
15.4.2 Sphere and Cylinder……Page 1170
15.4.3 Concentrated Heat Sources……Page 1171
15.4.4 Channels Filled with Porous Media……Page 1172
15.4.5 Compact Heat Exchangers as Porous Media……Page 1173
15.5.1 Vertical Walls……Page 1175
15.5.2 Horizontal Walls……Page 1181
15.5.4 Concentrated Heat Sources……Page 1182
15.6.1 Enclosures Heated from the Side……Page 1184
15.6.2 Cylindrical and Spherical Enclosures……Page 1191
15.6.3 Enclosures Heated from Below……Page 1192
15.6.4 Penetrative Convection……Page 1197
15.7 other Configurations……Page 1198
Nomenclature……Page 1201
References……Page 1204
16. Heat Pipes……Page 1209
16.1.1 Heat Pipe Basics……Page 1210
16.1.2 Wick Structures……Page 1213
16.1.3 Classification by Type of Control……Page 1215
16.1.4 Capillary Action……Page 1219
16.2.1 Introduction……Page 1221
16.2.2 Capillary Limit……Page 1223
16.2.3 Boiling Limit……Page 1229
16.2.4 Entrainment Limit……Page 1230
16.2.5 Viscous Limit……Page 1233
16.2.6 Sonic Limit……Page 1234
16.2.7 Condenser Limit……Page 1236
16.3 Heat Pipe Thermal Resistance……Page 1237
16.4 Figures of Merit……Page 1239
16.5.1 Continuum Vapor and Liquid-Saturated Wick……Page 1240
16.5.2 Wick Depriming and Rewetting……Page 1241
16.5.3 Freeze-Thaw Issues……Page 1242
16.5.4 Supercritical Startup……Page 1244
16.6.1 Variable Conductance Heat Pipes……Page 1245
16.6.2 Micro and Miniature Heat Pipes……Page 1246
16.6.3 Pulsating Heat Pipes……Page 1248
16.6.4 Loop Heat Pipes and Capillary Pumped Loops……Page 1249
Nomenclature……Page 1253
References……Page 1255
17. Heat Transfer in Manufacturing and Materials Processing……Page 1259
17.1 Introduction……Page 1260
17.2.1 Uniform Thermal Environment……Page 1262
Thin Solid Model……Page 1263
Two-Dimensional Workpieces……Page 1266
Thin Plate or Rod with a Moving Planar Heat Source……Page 1269
Thin Plate with a Moving Line Heat Source……Page 1270
Semi-infinite Plane with a Finite Size Moving Heat Source……Page 1271
17.3 Thermal Issues in Heat Treatment of Solids……Page 1273
17.4.1 Background……Page 1274
Tool-Chip Interface Temperature Rise……Page 1276
Assessment of Steady-State Metal Cutting Temperature Models……Page 1277
17.5 Machining Processes: Grinding……Page 1278
17.5.1 Background……Page 1279
17.5.2 Workpiece Temperatures during Grinding……Page 1280
17.6.2 Considerations for Thermal-Fluid Modeling in Extrusion and Drawing……Page 1282
Deformation Heating Considerations……Page 1283
Frictional Heating Considerations……Page 1284
17.7.2 Processing of Thermosetting-Matrix Composites……Page 1287
Thermal Model……Page 1289
Kinetics Model……Page 1290
Laminate Consolidation Model……Page 1294
17.7.3 Processing of Thermoplastic-Matrix Composites……Page 1297
Heat Transfer……Page 1301
Void Dynamics……Page 1302
Interlaminar Bonding……Page 1305
Polymer Degradation……Page 1308
Solidification (Crystallization)……Page 1309
17.8 Thermal Process Control for Manufacturing……Page 1312
Thermostatic (On-Off) Control……Page 1313
Proportional-Integral-Derivative (PID) Control……Page 1314
Software Implementation of SISO Controllers……Page 1315
State Controllers by Pole Placement……Page 1316
State Observers by Pole Placement……Page 1317
17.8.3 Optimal Formulation: Linear Quadratic Gaussian……Page 1318
Optimal Observation: Kalman-Bucy Filter……Page 1319
17.8.4 Smith Prediction……Page 1320
17.8.5 Sliding Mode Control……Page 1321
Model Reference Adaptive Control (MRAC)……Page 1322
Self-Tuning Regulation……Page 1323
Orthogonal Projection……Page 1324
Nomenclature……Page 1325
References……Page 1329
18. Microscale Heat Transfer……Page 1336
18.1 Introduction……Page 1337
18.2.1 Crystalline Structure……Page 1339
18.2.2 Energy Carriers……Page 1341
18.2.3 Free Electron Gas……Page 1342
18.2.4 Vibrational Modes of a Crystal……Page 1344
Electron Heat Capacity……Page 1349
Phonon Heat Capacity……Page 1350
Electron Thermal Conductivity in Metals……Page 1353
Lattice Thermal Conductivity……Page 1355
18.3.1 Continuum Models……Page 1358
18.3.2 Boltzmann Transport Equation……Page 1360
Phonons……Page 1361
Electrons……Page 1363
18.3.3 Molecular Approach……Page 1365
18.4 Observation……Page 1366
18.4.1 Scanning Thermal Microscopy……Page 1367
18.4.2 3wTechnique……Page 1369
18.4.3 Transient Thermoreflectance Technique……Page 1371
18.5.1 Microelectronics Applications……Page 1374
18.5.2 Multilayer Thin-Film Structures……Page 1376
Nomenclature……Page 1379
References……Page 1382
19.1 Introduction……Page 1385
19.2.2 External Convection to Spheres……Page 1387
19.2.3 Heat Transfer inside Spheres……Page 1388
19.3.1 General Considerations……Page 1389
Film Condenser……Page 1391
Condensation on Liquid Droplets……Page 1392
Condensation in a Liquid……Page 1393
Droplet Evaporation in a Liquid……Page 1397
19.4.1 Spray Columns……Page 1399
Global Treatments……Page 1401
Differential Treatment……Page 1407
Melting and Solidification Applications……Page 1410
19.4.2 Baffled Columns……Page 1413
19.4.3 Packed Columns……Page 1415
19.5 Concluding Comments……Page 1418
Nomenclature……Page 1419
References……Page 1421
Subject Index……Page 1427
Reviews
There are no reviews yet.