Breakwaters and closure dams

Free Download

Authors:

ISBN: 0203401344, 9780203401347

Size: 27 MB (28018274 bytes)

Pages: 379/379

File format:

Language:

Publishing Year:

K d Angremond,F C van Roode,NetLibrary, Inc.0203401344, 9780203401347


Table of contents :
BREAKWATERS AND CLOSURE DAMS……Page 1
Contents……Page 3
Preface……Page 9
1.2 Authors……Page 11
Table of Contents……Page 0
1.4 Miscellaneous……Page 12
2.1 General……Page 14
2.2.2 Monolithic types……Page 16
2.2.4 Special (unconventional) types……Page 17
2.3 Types of closure dams……Page 19
2.4 Historical breakwaters……Page 22
2.5.2 The damming of the rivers Rhine and Meuse in the late Middle Ages……Page 25
2.5.3 From the Middle Ages to 1920……Page 26
2.5.4 1920 until 1952……Page 27
2.5.5 Period after 1952……Page 30
3.1 General……Page 33
3.2 Abstraction level……Page 34
3.4 Cyclic design……Page 35
3.5 Consequences of systematic design……Page 36
3.6 Probabilities……Page 37
3.6.1 Basics of a probabilistic analysis and the use of safety coefficients……Page 38
3.6.2 Additional problem in coastal engineering……Page 39
3.6.3 Determination of a design storm……Page 40
4.2 Functions of breakwaters and examples……Page 42
4.2.1 Protection against waves……Page 43
4.2.2 Guiding of currents……Page 47
4.2.3 Protection against shoaling……Page 48
4.2.4 Provision of dock or quay facilities……Page 50
4.3.1 Failure modes……Page 51
4.3.2 Nautical characteristics……Page 52
4.4 Functions of closure dams and side effects……Page 53
4.4.1 Closure of the rivers Rhine and Meuse……Page 54
4.4.2 Side effects of the Enclosure Dike (Afsluitdijk)……Page 57
4.5 Various dams and a few details……Page 58
5.2.1 Upland discharges……Page 60
5.2.2 Hydraulics of tides……Page 62
5.2.3 Flow through gaps……Page 67
5.2.4 Modelling……Page 72
5.2.5 Forces on floating objects……Page 74
5.2.6 Stability of floating objects……Page 75
5.3.1 Linear wave theory……Page 78
5.3.2 RefractionF diffractionF shoalingF breaking and reflection……Page 81
5.3.3 Irregular waves in deep water……Page 86
5.4.1 Geotechnical data……Page 95
5.4.2 Geotechnical stability……Page 98
5.4.3 Settlement……Page 103
5.4.4 Groundwater……Page 104
6.1 General……Page 106
6.3.1 Bathymetry……Page 107
6.3.3 Storm surges……Page 108
6.3.4 Waves……Page 109
6.4 Geotechnical data……Page 110
6.5.1 Construction materials……Page 112
6.5.3 Labour……Page 114
7.2.1 General……Page 115
7.2.2 Iribarren……Page 116
7.2.3 Hudson……Page 119
7.2.4 Comparison of Hudson and Iribarren formulae……Page 121
7.2.5 Application of Hudson formula……Page 122
7.3.1 General……Page 124
7.3.2 Quarry stone……Page 127
7.3.3 Concrete blocks……Page 128
7.4 Stability calculation……Page 130
7.5.2 Shallow water conditions……Page 131
7.5.4 Grading of quarry stone……Page 132
7.5.5 Stability of toe……Page 134
7.5.7 Stability of crest and rear armour……Page 135
7.5.8 Stability of low and submerged breakwaters……Page 136
7.6 Future developments……Page 137
8.1 Introduction……Page 139
8.2 Seaward profiles……Page 140
8.3 Longshore transport of stone……Page 142
8.5 Head of berm breakwater……Page 143
9.1 Introduction……Page 144
9.2.1 Quasi static forces……Page 145
9.2.2 Oynamic forces……Page 146
9.2.3 A working compromise: the Goda formula……Page 149
9.2.4 Influencing the forces……Page 150
9.3 Scour……Page 152
9.4 Foundation……Page 153
10.1 Introduction……Page 155
10.3 Run-up……Page 156
10.4 Overtopping for rubble mounds……Page 160
10.5 Overtopping and transmission for vertical walls……Page 162
10.6 Transmission by rubble mounds……Page 163
11.1 Introduction……Page 167
11.2.1 Permeability/porosity……Page 168
11.2.2 Layer thickness and number of units……Page 169
11.3 Berm breakwater……Page 170
11.4.1 Classification……Page 172
11.4.2 General design rules……Page 173
11.4.3 Standard cross-sections……Page 176
11.5 Monolithic breakwaters……Page 179
12.1 Closing an estuary, creating final gaps in the tidal channels……Page 181
12.2 Blocking the shallows first……Page 182
12.3 Blocking the main channel first……Page 186
12.4 Closure over the full dam length……Page 192
12.5 Cross section of closure dams……Page 195
12.6 Final remarks……Page 197
13.1 Introduction……Page 199
13.2 Scour prevention by mattresses……Page 201
13.3 Construction and use of mattresses……Page 203
13.4 Construction of granular filters……Page 204
13.5 Providing and handling of quarry stone……Page 205
13.6 Use of rolling and floating equipment……Page 207
13.6.1 Rolling equipment……Page 208
13.6.2 Floating equipment……Page 211
13.6.3 Combination of floating and rolling equipment……Page 213
13.7.1 Closure by hydraulic filling with sand only……Page 214
13.7.2 Use of a temporary bridge or a cable way……Page 218
13.8 Minimizing risks during construction……Page 219
14.1.1 Caissons, closed or provided with sluice gates……Page 221
14.2.1 Monolithic breakwaters constructed by assembling small units……Page 223
14.2.3 Prefabricated large units……Page 224
14.3.1 Building yard……Page 225
14.3.3 Preparation of foundation and abutments……Page 226
14.3.4 Floating stability during transport, positioning and ballasting……Page 227
14.3.5 The sinking operation……Page 229
14.3.6 Work-window of flow conditions during the sinking operation……Page 231
14.3.7 Number of caissons and/or sluice gate caissons……Page 233
15.1 Introduction……Page 234
15.2 Failure mechanisms……Page 235
15.3 Fault trees……Page 238
15.4.1 Micro level……Page 242
15.4.2 Macro level……Page 243
16.1 Calculation of flow in a river channel……Page 245
16.2 Calculation of flow in the entrance of a tidal basin……Page 247
17.1.1 Rubble or monolithic……Page 254
17.1.3 Which design formula?……Page 255
17.2.1 Decisive circumstances……Page 256
BACKWASH……Page 263
CHOP……Page 264
CURRENT, LITTORAL……Page 265
EBB CURRENT……Page 266
FROUDE NUMBER……Page 267
HYDROGRAPHY……Page 268
LOW WATER LINE……Page 269
MEDIAN DIAMETER……Page 270
PERMEABLE GROIN……Page 271
REFRACTION COEFFICIENT……Page 272
SEICHE……Page 273
SLACK TIDE (SLACK WATER)……Page 274
SURGING BREAKER……Page 275
VELOCITY OF WAVES……Page 276
WINDWARD……Page 277
Joints (see Figure A2-1 and Figure A2-2)……Page 278
Fault (see Figure A2-3 and Figure A2-4)……Page 279
Discontinuities……Page 280
Operation of the quarry……Page 285
A3.2 Shape……Page 287
A3.4 Density……Page 289
A3-5 Fabrication……Page 290
A3.6 Placement……Page 291
APPENDIX 4: Goda’s principles for breakwater design……Page 295
2.1 Examples of upright breakwaters in modern history of Japanese ports……Page 296
2.2 Some features of Japanese upright breakwaters……Page 300
3.1 Hiroi’s formula……Page 301
3.2 Sainflou’s formula……Page 302
3.3 Minikin’s formula and others……Page 303
4.1 Proposal of universal wave pressure formulae……Page 304
4.2 Design wave……Page 305
4.3 Wave pressure, buoyancy and uplift pressure……Page 307
4.4 Stability analysis……Page 309
4.5 Example of wave pressure calculation……Page 310
5.2 Structural aspects of reinforced concrete caisson……Page 312
6 Concluding remarks……Page 313
References……Page 314
APPENDIX 5: Filter rules……Page 316
A6.1.1 Caisson breakwaters……Page 318
A6.1.2 Stone breakwaters……Page 319
A6.1.3 Combinations……Page 320
A6.2 IJmuiden……Page 321
A6.3 Scheveningen……Page 324
APPENDIX 7: Optimum breakwater design……Page 326
A8.1.1 Material in bulk……Page 329
A8.1.2 Special placement……Page 331
Pipeline transport……Page 332
Floating transport……Page 333
A8.3 Tolerances……Page 335
A8.4 Moving on impassable sites……Page 336
APPENDIX 9: Closures using ancient willow mattresses……Page 340
A10.1 Statistics of individual observations……Page 346
A10.2 The Peak over Threshold method……Page 349
The exponential distribution……Page 351
The Gumbel distribution……Page 352
The Weibull distribution……Page 355
Summary……Page 357
A10.3 What to do if only random data are available?……Page 358
A10.4.1 The classical computation……Page 362
The partial safety coefficients for load……Page 364
The partial safety coefficient for strength……Page 367
A10.4.3 Probabilistic approach……Page 368
A10.4.4 Probabilistic calculation in case of a shallow foreshore……Page 371
Overview of useful lecture notes……Page 375

Reviews

There are no reviews yet.

Be the first to review “Breakwaters and closure dams”
Shopping Cart
Scroll to Top