Richard J. Fleming, James E. Jamison1584880406, 9781584880400
Table of contents :
ISOMETRIES ON BANACH SPACES: function spoces……Page 3
Contents……Page 5
Preface……Page 7
1.1. Introduction……Page 10
1.2. Banach’s Characterization of Isometries on C(Q)……Page 11
1.3. The Mazur-Ulam Theorem……Page 15
1.4. Orthogonality……Page 19
1.5. The Wold Decomposition……Page 24
1.6. Notes and Remarks……Page 28
2.1. Introduction……Page 33
2.2. Eilenberg’s Theorem……Page 34
2.3. The Nonsurjective Case……Page 37
2.4. A Theorem of Vesentini……Page 47
2.5. Notes and Remarks……Page 50
3.1. Introduction……Page 56
3.2. Lamperti’s Results……Page 57
3.3. Subspaces of LP and the Extension Theorem……Page 62
3.4. Bochner Kernels……Page 74
3.5. Notes and Remarks……Page 79
4.2. Isometries of the Hardy Spaces of the Disk……Page 85
4.3. Bergman Spaces……Page 95
4.4. Bloch Spaces……Page 98
4.5. SP Spaces……Page 102
4.6. Notes and Remarks……Page 104
5.1. Introduction……Page 108
5.2. Lumer’s Method for Orlicz Spaces……Page 109
5.3. Zaidenberg’s Generalization……Page 123
5.4. Musielak-Orlicz Spaces……Page 132
5.5. Notes and Remarks……Page 147
6.1. Introduction……Page 150
6.2. Kadison’s Theorem……Page 151
6.3. Subdifferentiability and Kadison’s Theorem……Page 156
6.4. The Nonsurjective Case of Kadison’s Theorem……Page 162
6.5. The Algebras C(1) and AC……Page 169
6.6. Douglas Algebras……Page 173
6.7. Notes and Remarks……Page 176
Bibliography……Page 185
Reviews
There are no reviews yet.