Partial Differential Equations VII: Spectral Theory of Differential Operators

Free Download

Authors:

Edition: 1

Series: Encyclopaedia of Mathematical Sciences 64

Volume: Part 7

ISBN: 9783540546771, 3540546774

Size: 2 MB (1923327 bytes)

Pages: 274/270

File format:

Language:

Publishing Year:

Category: Tags: , , , , ,

G. V. Rozenblum, M. A. Shubin, M. Z. Solomyak (auth.), M. A. Shubin (eds.)9783540546771, 3540546774

§18 Operators with Almost Periodic Coefficients . . . . . . . . . . . . . . . . . . . 186 18. 1. General Definitions. Essential Self-Adjointness . . . . . . . . . . . . 186 18. 2. General Properties of the Spectrum and Eigenfunctions . . . . 188 18. 3. The Spectrum of the One-Dimensional Schrödinger Operator with an Almost Periodic Potential . . . . . . . . . . . . . . 192 18. 4. The Density of States of an Operator with Almost Periodic Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 18. 5. Interpretation of the Density of States with the Aid of von Neumann Aigebras and Its Properties . . . . . . . . . . . . . . 199 §19 Operators with Random Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . 206 19. 1. Translation Homogeneous Random Fields . . . . . . . . . . . . . . . . . 207 19. 2. Random DifferentialOperators . . . . . . . . . . . . . . . . . . . . . . . . . . 212 19. 3. Essential Self-Adjointness and Spectra . . . . . . . . . . . . . . . . . . . 214 19. 4. Density of States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 19. 5. The Character of the Spectrum. Anderson Localization 220 §20 Non-Self-Adjoint Differential Operators that Are Close to Self-Adjoint Ones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 20. 1. Preliminary Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 20. 2. Basic Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 20. 3. Completeness Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 20. 4. Expansion and Summability Theorems. Asymptotic Behaviour of the Spectrum . . . . . . . . . . . . . . . . . . . 228 20. 5. Application to DifferentialOperators . . . . . . . . . . . . . . . . . . . . . 230 Comments on the Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 Author Index 262 Subject Index 265 Preface The spectral theory of operators in a finite-dimensional space first appeared in connection with the description of the frequencies of small vibrations of me­ chanical systems (see Arnol’d et al. 1985). When the vibrations of astring are considered, there arises a simple eigenvalue problem for a differential opera­ tor. In the case of a homogeneous string it suffices to use the classical theory 6 Preface of Fourier series.

Table of contents :
Front Matter….Pages i-v
Spectral Theory of Differential Operators….Pages 1-235
Back Matter….Pages 236-274

Reviews

There are no reviews yet.

Be the first to review “Partial Differential Equations VII: Spectral Theory of Differential Operators”
Shopping Cart
Scroll to Top