Norman Johnson, Vikram Jha, Mauro Biliotti9781584886051, 1584886056
Table of contents :
Title……Page 2
Copyright……Page 5
Contents……Page 8
Preface and Acknowledgments……Page 20
CHAPTER 1: An Overview……Page 24
CHAPTER 2: Translation Plane Structure Theory……Page 28
CHAPTER 3: Partial Spreads and Translation Nets……Page 36
CHAPTER 4: Partial Spreads and Generalizations……Page 40
CHAPTER 5: Quasifields……Page 52
CHAPTER 6: Derivation……Page 70
CHAPTER 7: Frequently Used Tools……Page 78
CHAPTER 8: Sharply Transitive Sets……Page 82
CHAPTER 9: SL(2, p) × SL(2, p)-Planes……Page 86
CHAPTER 10: Classical Semifields……Page 94
CHAPTER 11: Groups of Generalized Twisted Field Planes……Page 100
CHAPTER 12: Nuclear Fusion in Semifields……Page 114
CHAPTER 13: Cyclic Semifields……Page 132
CHAPTER 14: T-Cyclic GL(2, q)-Spreads……Page 136
CHAPTER 15: Cone Representation Theory……Page 140
CHAPTER 16: Andre Net Replacements and Ostrom–Wilke Generalizations……Page 146
CHAPTER 17: Foulser’s Lambda-Planes……Page 154
CHAPTER 18: Regulus Lifts, Intersections over Extension Fields……Page 166
CHAPTER 19: Hyper-Reguli Arising from Andre Hyper-Reguli……Page 176
CHAPTER 20: Translation Planes with Large Homology Groups……Page 182
CHAPTER 21: Derived Generalized Andre Planes……Page 188
CHAPTER 22: The Classes of Generalized Andre Planes……Page 192
CHAPTER 23: C-System Nearfields……Page 194
CHAPTER 24: Subregular Spreads……Page 198
CHAPTER 25: Fano Configurations……Page 234
CHAPTER 26: Fano Configurations in Generalized Andre Planes……Page 240
CHAPTER 27: Planes with Many Elation Axes……Page 242
CHAPTER 28: Klein Quadric……Page 246
CHAPTER 29: Parallelisms……Page 248
CHAPTER 30: Transitive Parallelisms……Page 258
CHAPTER 31: Ovoids……Page 264
CHAPTER 32: Known Ovoids……Page 268
CHAPTER 33: Simple T-Extensions of Derivable Nets……Page 272
CHAPTER 34: Baer Groups on Parabolic Spreads……Page 280
CHAPTER 35: Algebraic Lifting……Page 286
CHAPTER 36: Semifield Planes of Orders q4, q6……Page 294
CHAPTER 37: Known Classes of Semifields……Page 300
CHAPTER 38: Methods of Oyama, and the Planes of Suetake……Page 306
CHAPTER 39: Coupled Planes……Page 312
CHAPTER 40: Hyper-Reguli……Page 320
CHAPTER 41: Subgeometry Partitions……Page 330
CHAPTER 42: Groups on Multiple Hyper-Reguli……Page 334
CHAPTER 43: Hyper-Reguli of Dimension 3……Page 338
CHAPTER 44: Elation-Baer Incompatibility……Page 346
CHAPTER 45: Hering–Ostrom Elation Theorem……Page 352
CHAPTER 46: Baer Elation Theory……Page 356
CHAPTER 47: Spreads Admitting Unimodular Sections—Foulser–Johnson Theorem……Page 360
CHAPTER 48: Spreads of Order q2—Groups of Order q2……Page 374
CHAPTER 49: Transversal Extensions……Page 380
CHAPTER 50: Indicator Sets……Page 396
CHAPTER 51: Geometries and Partitions……Page 416
CHAPTER 52: Maximal Partial Spreads……Page 428
CHAPTER 53: Sperner Spaces……Page 430
CHAPTER 54: Conical Flocks……Page 432
CHAPTER 55: Ostrom and Flock Derivation……Page 444
CHAPTER 56: Transitive Skeletons……Page 454
CHAPTER 57: BLT-Set Examples……Page 456
CHAPTER 58: Many Ostrom-Derivates……Page 460
CHAPTER 59: Infinite Classes of Flocks……Page 462
CHAPTER 60: Sporadic Flocks……Page 468
CHAPTER 61: Hyperbolic Fibrations……Page 472
CHAPTER 62: Spreads with `Many’ Homologies……Page 484
CHAPTER 63: Nests of Reguli……Page 494
CHAPTER 64: Chains……Page 508
CHAPTER 65: Multiple Nests……Page 514
CHAPTER 66: A Few Remarks on Isomorphisms……Page 524
CHAPTER 67: Flag-Transitive Geometries……Page 526
CHAPTER 68: Quartic Groups in Translation Planes……Page 532
CHAPTER 69: Double Transitivity……Page 538
CHAPTER 70: Triangle Transitive Planes……Page 544
CHAPTER 71: Hiramine–Johnson–Draayer Theory……Page 546
CHAPTER 72: Bol Planes……Page 552
CHAPTER 73: 2/3-Transitive Axial Groups……Page 554
CHAPTER 74: Doubly Transitive Ovals and Unitals……Page 558
CHAPTER 75: Rank 3 Affine Planes……Page 562
CHAPTER 76: Transitive Extensions……Page 566
CHAPTER 77: Higher-Dimensional Flocks……Page 578
CHAPTER 78: j…j-Planes……Page 592
CHAPTER 79: Orthogonal Spreads……Page 606
CHAPTER 80: Symplectic Groups—The Basics……Page 612
CHAPTER 81: Symplectic Flag-Transitive Spreads……Page 620
CHAPTER 82: Symplectic Spreads……Page 642
CHAPTER 83: When Is a Spread Not Symplectic?……Page 654
CHAPTER 84: When Is a Spread Symplectic?……Page 664
CHAPTER 85: The Translation Dual of a Semifield……Page 666
CHAPTER 86: Unitals in Translation Planes……Page 672
CHAPTER 87: Hyperbolic Unital Groups……Page 684
CHAPTER 88: Transitive Parabolic Groups……Page 694
CHAPTER 89: Doubly Transitive Hyperbolic Unital Groups……Page 696
CHAPTER 90: Retraction……Page 700
CHAPTER 91: Multiple Spread Retraction……Page 716
CHAPTER 92: Transitive Baer Subgeometry Partitions……Page 724
CHAPTER 93: Geometric and Algebraic Lifting……Page 732
CHAPTER 94: Quasi-Subgeometry Partitions……Page 738
CHAPTER 95: Hyper-Regulus Partitions……Page 754
CHAPTER 96: Small-Order Translation Planes……Page 760
CHAPTER 97: Dual Translation Planes and Their Derivates……Page 768
CHAPTER 98: Affine Planes with Transitive Groups……Page 772
CHAPTER 99: Cartesian Group Planes—Coulter–Matthews……Page 774
CHAPTER 100: Planes Admitting PGL(3, q)……Page 778
CHAPTER 101: Planes of Order………Page 780
CHAPTER 102: Real Orthogonal Groups and Lattices……Page 782
CHAPTER 103: Aspects of Symplectic and Orthogonal Geometry……Page 786
CHAPTER 104: Fundamental Results on Groups……Page 804
CHAPTER 105: Atlas of Planes and Processes……Page 812
Bibliography……Page 830
Theorems……Page 872
Models……Page 876
General Index……Page 880
Reviews
There are no reviews yet.