Cold molecules: theory, experiment, applications

Free Download

Authors:

ISBN: 9781420059038, 1420059033

Size: 35 MB (36526592 bytes)

Pages: 718/718

File format:

Language:

Publishing Year:

Category: Tags: , ,

Roman Krems, Bretislav Friedrich, William C Stwalley9781420059038, 1420059033

The First Book on Ultracold Molecules

Cold molecules offer intriguing properties on which new operational principles can be based (e.g., quantum computing) or that may allow researchers to study a qualitatively new behavior of matter (e.g., Bose-Einstein condensates structured by the electric dipole interaction). This interdisciplinary book discusses novel methods to create and confine molecules at temperatures near absolute zero (1 microKelvin to 1 Kelvin) and surveys the research done with and on cold molecules to date. It is evident that this research has irreversibly changed atomic, molecular, and optical physics and quantum information science. Its impact on condensed-matter physics, astrophysics, and physical chemistry is becoming apparent as well. This monograph provides seasoned researchers as well as students entering the field with a valuable companion, one which, in addition, will help to foster their identity within their institutions and the physics and chemistry communities at large.

Features a foreword by Nobel Laureate Dudley Herschbach


Table of contents :
COLD MOLECULES: Theory, Experiment, Applications……Page 2
Contents……Page 4
Foreword……Page 7
Acknowledgments……Page 9
COLD MOLECULES ARE HOT……Page 10
COLLISIONS OF COLD AND ULTRACOLD MOLECULES……Page 11
PHOTOASSOCIATION OF ULTRACOLD ATOMS……Page 13
FEW- AND MANY-BODY PHYSICS WITH COLD MOLECULES……Page 15
COOLING AND TRAPPING OF PREEXISTING MOLECULES……Page 17
TESTS OF FUNDAMENTAL PHYSICS WITH COLD MOLECULES……Page 20
QUANTUM COMPUTING WITH COLD MOLECULES……Page 21
MUCH OF THE ABOVE WITH COLD MOLECULAR IONS……Page 22
PROSPECTS……Page 23
Editors……Page 24
Contributors……Page 25
Table of Contents……Page 0
Part I: Cold Collisions……Page 29
CONTENTS……Page 30
1.2.1 LABORATORY AND CENTER OF MASS COORDINATES……Page 31
1.2.2 CROSS-SECTIONS AND RATE COEFFICIENTS……Page 32
1.2.3 ELASTIC, INELASTIC, AND REACTIVE SCATTERING……Page 33
1.3.1 SINGLE-CHANNEL SCATTERING (FOR UNSTRUCTURED ATOMS)……Page 34
1.3.1.2 Low-Energy Collisions……Page 38
1.3.1.3 Numerical Methods……Page 40
1.3.2.1 Atom–Diatom Scattering……Page 42
1.3.2.2 Scattering of Metastable Helium Atoms……Page 43
1.3.3 COUPLED EQUATIONS……Page 44
1.3.3.2 Numerical Methods for Scattering……Page 46
1.3.3.3 Decoupling Approximations……Page 47
1.3.3.5 Numerical Methods for Bound States……Page 48
1.3.4 QUASIBOUND STATES AND SCATTERING RESONANCES……Page 50
1.3.5 LOW-ENERGY SCATTERING……Page 52
1.3.6 COLLISIONS IN EXTERNAL FIELDS……Page 53
1.3.6.1 Basis Sets without Total Angular Momentum……Page 54
1.3.6.3 Zero-Energy Feshbach Resonances……Page 55
1.4 REACTIVE SCATTERING……Page 57
1.4.1 LANGEVIN MODEL FOR BARRIERLESS REACTIONS……Page 59
REFERENCES……Page 61
2.1 GENERAL REMARKS……Page 65
2.2 REVIEW OF CLASSICAL DIPOLES……Page 66
2.3.1 ATOMS……Page 68
2.3.2 ROTATING MOLECULES……Page 71
2.3.3 MOLECULES WITH LAMBDA-DOUBLING……Page 74
2.4 THE FIELD DUE TO A DIPOLE……Page 77
2.4.1 EXAMPLE: j = 1/2……Page 79
2.4.2 EXAMPLE: j = 1……Page 81
2.5 INTERACTION OF DIPOLES……Page 83
2.5.1 POTENTIAL MATRIX ELEMENTS……Page 84
2.5.2 ADIABATIC POTENTIAL ENERGY SURFACES IN TWO DIMENSIONS……Page 87
2.5.3 EXAMPLE: j = 1/2 MOLECULES……Page 88
2.5.4 ADIABATIC POTENTIAL ENERGY CURVES IN ONE DIMENSION: PARTIAL WAVES……Page 91
2.5.5 ASYMPTOTIC FORM OF THE INTERACTION……Page 92
REFERENCES……Page 93
CONTENTS……Page 94
3.1 INTRODUCTION……Page 95
3.2.1.1 Collisions at Cold and Ultracold Temperatures……Page 96
3.2.1.2 Shape Resonances in Molecular Collisions……Page 104
3.2.1.3 Feshbach Resonances in Molecular Collisions……Page 105
3.2.2 QUASIRESONANT TRANSITIONS……Page 107
3.2.3 ATOM–MOLECULAR ION COLLISIONS……Page 108
3.3 CHEMICAL REACTIONS AT ULTRACOLD TEMPERATURES……Page 109
3.3.1 TUNNELING-DOMINATED REACTIONS……Page 111
3.3.1.1 Reactions at Zero Temperature……Page 112
3.3.1.2 Feshbach Resonances in Reactive Scattering……Page 117
3.3.2.1 Collision Systems of Three Alkali Metal Atoms……Page 120
3.3.2.2 Role of PES in Determining Ultracold Reactions……Page 126
3.3.2.3 Relaxation of Vibrationally Excited Alkali Metal Dimers……Page 129
3.3.2.4 Reactions of Heteronuclear and Isotopically Substituted Alkali-Metal Dimer Systems……Page 131
3.4.1 MOLECULES IN THE GROUND VIBRATIONAL STATE……Page 133
3.4.2 VIBRATIONALLY INELASTIC TRANSITIONS……Page 137
3.5 SUMMARY AND OUTLOOK……Page 140
ACKNOWLEDGMENTS……Page 141
REFERENCES……Page 142
4.1 INTRODUCTION……Page 150
4.2 COLLISIONS IN MAGNETIC TRAPS……Page 151
4.2.1 ZEEMAN RELAXATION……Page 152
4.2.2 TUNABLE SHAPE RESONANCES……Page 156
4.3.1 STARK RELAXATION……Page 159
4.3.2 SCATTERING OF MOLECULAR DIPOLES……Page 161
4.3.3 ELECTRIC-FIELD-INDUCED RESONANCES……Page 162
4.4 COLLISIONS IN SUPERIMPOSED ELECTRIC AND MAGNETIC FIELDS……Page 163
4.4.1 EFFECTS OF ELECTRIC FIELDS ON MAGNETIC FESHBACH RESONANCES……Page 165
4.4.2 COLLISIONS NEAR TUNABLE AVOIDED CROSSINGS……Page 166
4.4.3 EFFECTS OF FIELD ORIENTATIONS……Page 169
4.4.4 DIFFERENTIAL SCATTERING IN ELECTROMAGNETIC FIELDS……Page 175
4.5 COLLISIONS IN RESTRICTED GEOMETRIES……Page 181
4.6 COLD CONTROLLED CHEMISTRY……Page 187
REFERENCES……Page 189
Part II: Photoassociation……Page 192
CONTENTS……Page 193
5.1.2 THE PROCESS OF PHOTOASSOCIATION……Page 194
5.1.3.1 Like Atoms……Page 196
5.1.3.2 Unlike Atoms……Page 206
5.1.3.3 Involving Molecules……Page 212
5.1.3.4 In a Quantum Degenerate Gas……Page 213
5.1.3.5 In an Electromagnetic Field……Page 216
5.1.3.6 In an Optical Lattice……Page 217
5.2.1 LEVELS NEAR DISSOCIATION……Page 218
5.2.2.1 Production by Photoassociation……Page 225
5.2.2.2 Enhancement in Double-Minimum Potentials……Page 226
5.2.2.3 Enhancement by Resonant Coupling of Excited States……Page 228
5.2.2.4 Stimulated Raman Transfer to Deeply Bound Levels……Page 230
5.3.1 ULTRACOLD MOLECULAR IONS……Page 232
5.3.2 TESTS OF FUNDAMENTAL PHYSICAL CONSTANTS AND SYMMETRIES……Page 233
5.3.4 ULTRACOLD COLLISIONS AND CHEMISTRY……Page 234
REFERENCES……Page 235
6.1 INTRODUCTION……Page 244
6.2 PROPERTIES FOR A SINGLE POTENTIAL……Page 246
6.3 INTERACTIONS FOR MULTIPLE POTENTIALS……Page 253
6.4 MAGNETICALLY TUNABLE RESONANCES……Page 256
6.5 PHOTOASSOCIATION……Page 261
REFERENCES……Page 264
CONTENTS……Page 267
7.1.1 MAKING ULTRACOLD MOLECULES BY PHOTOASSOCIATION OF ULTRACOLD ATOMS……Page 269
7.1.3 OUTLINE OF THE PRESENT CHAPTER……Page 270
7.2.1.1 Choice of Cs2 as a Case Study……Page 271
7.2.1.3 Timescales and Characteristic Distances for the Vibrational Motion in the Excited State……Page 273
7.2.1.4 Description of the Initial Collision State……Page 274
7.2.2.1 The Chirped Pulse, Central Frequency, Energy, Spectral, and Temporal Widths……Page 276
7.2.3 THE TWO-CHANNEL COUPLED EQUATIONS AND THE CHOICE FOR A ROTATING WAVE APPROXIMATION……Page 278
7.2.3.1 Rotating Wave Approximation with the Instantaneous Frequency: Definition of the Photoassociation Window……Page 280
7.2.3.2 Rotating Wave Approximation with the Central Frequency……Page 281
7.3.1 NUMERICAL METHOD……Page 282
7.3.2.2 Formation of Halo Molecules via Optically Induced Feshbach Resonance……Page 283
7.3.2.3 Selectivity of the Resonance Window: Dependence of the Final Distribution of Population on the Pulse Parameters……Page 284
7.3.3 ANALYSIS WITHIN A TWO-STATE MODEL: THE CONCEPT OF ADIABATIC TRANSFER WITHIN A PHOTOASSOCIATION WINDOW……Page 286
7.3.4 AVERAGING OVER INITIAL VELOCITY DISTRIBUTION: USE OF SCALING LAWS……Page 288
7.3.4.2 Average Introducing Box-Independent Energy-Normalized States: Use of a Scaling Law Near Threshold……Page 289
7.3.5 WHAT IS THE ABSOLUTE NUMBER OF PHOTOASSOCIATED MOLECULES?……Page 290
7.3.6 TRANSIENT EFFECTS……Page 292
7.4 SHAPING VIBRATIONAL WAVEPACKETS IN THE EXCITED STATE TO OPTIMIZE STABILIZATION INTO DEEPLY BOUND LEVELS OF THE LOWER STATE……Page 293
7.4.2 PROPOSAL FOR A TWO-COLOR PUMP–DUMP EXPERIMENT……Page 294
7.4.2.1 The Time-Dependent Franck–Condon Overlap……Page 295
7.4.2.2 A Two-Color Experiment for Creating Stable Molecules……Page 296
7.5.1 PHENOMENOLOGICAL OBSERVATION OF A DEPLETION HOLE, A MOMENTUM KICK, AND A COMPRESSION EFFECT……Page 298
7.5.2 ANALYSIS OF THE MOMENTUM TRANSFER WITH PARTIALLY INTEGRATED MASS CURRENT AND POPULATION……Page 300
7.5.3 ADVANTAGE OF THE COMPRESSION EFFECT FOR PHOTOASSOCIATION WITH A SECOND PULSE……Page 301
7.5.4.2 Correlated Pairs of Hot Atoms……Page 303
7.6.1 CONTROLLING THE COMPRESSION EFFECT WITH A NONIMPULSIVE PULSE INDUCING MANY RABI CYCLES……Page 305
7.6.2.2 Thermal Average……Page 306
7.7 CONCLUSION AND PROSPECTS FOR THE NEAR FUTURE……Page 308
REFERENCES……Page 309
8.1 INTRODUCTION……Page 313
8.2 ADIABATIC RAMAN PHOTOASSOCIATION……Page 314
8.3.1 TWO-STATE DESCRIPTION OF MULTICHANNEL PHOTOASSOCIATION……Page 316
8.3.2 ARPA AS A PROJECTIVE MEASUREMENT……Page 322
8.4.1 SINGLE-CHANNEL ARPA OF A CHOSEN WAVE FORM……Page 324
8.4.2 THERMAL AVERAGING……Page 326
8.4.3 PA OF A SUPERPOSITION STATE: DETERMINING THE MULTICHANNEL STRUCTURE……Page 328
8.5 MOLECULAR DATA……Page 330
8.6 CONCLUSIONS……Page 333
REFERENCES……Page 334
Part III: Few- and Many-Body Physics……Page 339
9.1 INTRODUCTION……Page 340
9.1.1 ULTRACOLD ATOMS AND QUANTUM GASES……Page 341
9.1.2 BASIC PHYSICS OF A FESHBACH RESONANCE……Page 342
9.1.3 BINDING ENERGY REGIMES……Page 344
9.2.1 BOSONS AND FERMIONS: ROLE OF QUANTUM STATISTICS……Page 346
9.2.2 OVERVIEW OF ASSOCIATION METHODS……Page 348
9.2.4 DETECTION METHODS……Page 350
9.3.1 AVOIDED LEVEL CROSSINGS……Page 352
9.3.2 CRUISING THROUGH THE MOLECULAR SPECTRUM……Page 354
9.4 HALO DIMERS……Page 356
9.4.1 HALO DIMERS AND UNIVERSALITY……Page 357
9.4.2 COLLISIONAL PROPERTIES AND FEW-BODY PHYSICS……Page 358
9.4.3 EFIMOV THREE-BODY STATES……Page 360
9.4.4 MOLECULAR BEC……Page 362
9.5 TOWARD GROUND-STATE MOLECULES……Page 363
9.5.1 STIMULATED RAMAN ADIABATIC PASSAGE……Page 364
9.5.2 STIRAP EXPERIMENTS……Page 365
9.6 FURTHER DEVELOPMENTS AND CONCLUDING REMARKS……Page 368
ACKNOWLEDGMENTS……Page 369
REFERENCES……Page 370
10.1.1 STATE OF THE ART……Page 375
10.1.2 FESHBACH RESONANCES AND DIATOMIC MOLECULES……Page 377
10.2.1 WEAKLY INTERACTING GAS OF BOSONIC MOLECULES: MOLECULE–MOLECULE ELASTIC INTERACTION……Page 380
10.2.2 SUPPRESSION OF COLLISIONAL RELAXATION……Page 385
10.2.3 COLLISIONAL STABILITY AND MOLECULAR BEC……Page 388
10.3.1 EFFECT OF MASS RATIO ON ELASTIC INTERMOLECULAR INTERACTION……Page 390
10.3.2 COLLISIONAL RELAXATION FOR MODERATE MASS RATIOS……Page 393
10.3.3 BORN–OPPENHEIMER PICTURE OF COLLISIONAL RELAXATION……Page 394
10.3.4 MOLECULES OF HEAVY AND LIGHT FERMIONIC ATOMS……Page 396
10.3.5 TRIMER STATES……Page 399
10.3.6 COLLISIONAL RELAXATION OF MOLECULES OF HEAVY AND LIGHT FERMIONS AND FORMATION OF TRIMERS……Page 401
10.4.1 BORN–OPPENHEIMER POTENTIAL IN A MANY-BODY SYSTEM OF MOLECULES OF HEAVY AND LIGHT FERMIONS……Page 407
10.4.2 GAS–CRYSTAL QUANTUM TRANSITION……Page 410
10.4.3 MOLECULAR SUPERLATTICE IN AN OPTICAL LATTICE……Page 411
10.5 CONCLUDING REMARKS AND PROSPECTS……Page 412
REFERENCES……Page 413
11.1 INTRODUCTION……Page 419
11.2.1 ZEEMAN EFFECT IN THE HYPERFINE STRUCTURE OF ALKALI–METAL ATOMS……Page 420
11.2.3 SINGLET AND TRIPLET POTENTIALS……Page 422
11.2.4 BOUND STATES AND SCATTERING RESONANCES……Page 424
11.3.1 TWO-CHANNEL TWO-POTENTIAL APPROACH……Page 426
11.3.2 TWO-CHANNEL SINGLE-RESONANCE APPROACH……Page 427
11.4.1 RESONANCE WIDTH AND BACKGROUND-SCATTERING LENGTH……Page 429
11.4.2 RELATION BETWEEN BOUND-STATE ENERGY AND RESONANCE POSITION……Page 430
11.5.1 CLOSED-CHANNEL DOMINATED RESONANCES……Page 432
11.5.2 ENTRANCE-CHANNEL DOMINATED RESONANCES……Page 434
REFERENCES……Page 436
12.1 INTRODUCTION……Page 441
12.2.1 EFFECTIVE MANY-BODY HAMILTONIANS……Page 443
12.2.2 SELF-ASSEMBLED CRYSTALS……Page 445
12.2.3 BLUE-SHIELDING AND THREE-BODY INTERACTIONS……Page 447
12.2.4 HUBBARD LATTICE MODELS……Page 450
12.2.5 LATTICE SPIN MODELS……Page 451
12.2.6 HUBBARD MODELS IN SELF-ASSEMBLED DIPOLAR LATTICES……Page 453
12.3.1.1 Rotational Spectrum……Page 456
12.3.1.2 Coupling to External Electric Fields……Page 457
12.3.2 TWO MOLECULES……Page 458
12.3.2.1 Designing the Repulsive 1/r3 Potential in 2D……Page 459
12.3.2.2 Designing ad hoc Potentials with ac Fields……Page 464
12.4.1 TWO-DIMENSIONAL SELF-ASSEMBLED CRYSTALS……Page 467
12.4.2 FLOATING LATTICES OF DIPOLES……Page 470
12.4.3 THREE-BODY INTERACTIONS……Page 475
12.4.4 LATTICE SPIN MODELS……Page 479
REFERENCES……Page 483
Part IV: Cooling and Trapping……Page 490
CONTENTS……Page 491
13.2 BUFFER-GAS COOLING……Page 492
13.2.1.1 Laser Ablation and LIAD……Page 494
13.2.1.2 Beam Injection……Page 496
13.2.1.4 Discharge Etching……Page 498
13.2.2 ROTATIONAL AND VIBRATIONAL RELAXATION……Page 501
13.3 BUFFER-GAS LOADING OF MAGNETIC TRAPS……Page 502
13.3.1.1 Evaporative Loss……Page 503
13.3.1.2 Buffer Gas Removal……Page 505
13.3.1.3 Spin Relaxation Loss (Atoms)……Page 506
13.3.2 ZEEMAN RELAXATION COLLISIONS BETWEEN MOLECULES AND HELIUM……Page 509
13.3.2.1 Inelastic Collisions of 2sigma Molecules with He……Page 511
13.3.2.2 Inelastic Collisions of 3sigma Molecules with He……Page 512
13.4 BUFFER-GAS BEAM PRODUCTION……Page 514
13.4.1 THERMALIZATION AND EXTRACTION CONDITIONS……Page 515
13.4.2 BOOSTING CONDITION AND SLOW BEAM CONSTRAINTS……Page 516
13.4.3 STUDIES WITH DIFFUSIVELY EXTRACTED BEAMS……Page 517
13.4.4 STUDIES WITH HYDRODYNAMICALLY EXTRACTED BEAMS……Page 519
REFERENCES……Page 522
CONTENTS……Page 527
14.1 INTRODUCTION……Page 528
14.2.1 THE STARK DECELERATOR……Page 534
14.2.2 PHASE STABILITY IN THE STARK DECELERATOR……Page 536
14.2.3 TRANSVERSE FOCUSING IN A STARK DECELERATOR……Page 539
14.2.4 STARK DECELERATION OF OH RADICALS……Page 540
14.2.5 LONGITUDINAL FOCUSING OF A STARK DECELERATED MOLECULAR BEAM……Page 543
14.2.6 DECELERATION OF MOLECULES IN HIGH-FIELD SEEKING STATES……Page 545
14.3 THE ZEEMAN, RYDBERG, AND OPTICAL DECELERATOR……Page 546
14.4.1 DC TRAPPING OF MOLECULES IN LOW-FIELD SEEKING STATES……Page 548
14.4.2 STORAGE RING AND MOLECULAR SYNCHROTRON……Page 550
14.4.3 AC TRAPPING OF MOLECULES IN HIGH-FIELD SEEKING STATES……Page 551
14.5 APPLICATIONS OF DECELERATED BEAMS AND TRAPPED MOLECULES……Page 555
14.5.1 HIGH-RESOLUTION SPECTROSCOPY AND METROLOGY……Page 556
14.5.2 COLLISION STUDIES AT A TUNABLE COLLISION ENERGY……Page 558
14.5.3 DIRECT LIFETIME MEASUREMENTS OF METASTABLE STATES……Page 560
14.6 CONCLUSIONS AND OUTLOOK……Page 561
ACKNOWLEDGMENTS……Page 565
REFERENCES……Page 566
Part V: Tests of Fundamental Laws……Page 571
CONTENTS……Page 572
15.2.1 DO FUNDAMENTAL CONSTANTS VARY IN TIME?……Page 573
15.2.2 TESTING FUNDAMENTAL SYMMETRIES……Page 574
15.3 BEAMS OF COLD POLAR RADICALS……Page 577
15.3.1 APPARATUS……Page 578
15.3.2 TRANSLATIONAL TEMPERATURE AND SOURCE SIZE……Page 579
15.3.3 MOLECULAR FLUX……Page 581
15.3.4 ROTATIONAL TEMPERATURE……Page 584
15.4.1 STARK AND ZEEMAN SHIFTS OF THE HYPERFINE STATES……Page 585
15.4.2 TWO-PULSE INTERFEROMETRY OF A THREE-LEVEL SYSTEM……Page 588
15.4.3 EXPERIMENTS WITH SINGLE PULSES……Page 591
15.4.4 EXPERIMENTS WITH DOUBLE PULSES……Page 593
15.5.1 INTRODUCTION……Page 597
15.5.2 A MODEL ALTERNATING GRADIENT DECELERATOR……Page 599
15.5.3 AXIAL MOTION……Page 601
15.5.4 TRANSVERSE MOTION……Page 603
15.5.5 BEYOND THE IDEAL MODEL……Page 609
REFERENCES……Page 610
CONTENTS……Page 614
16.1 INTRODUCTION……Page 615
16.2 THEORETICAL MOTIVATION……Page 616
16.3 DEPENDENCE OF ATOMIC AND MOLECULAR SPECTRA ON alpha AND µ……Page 617
16.4 ASTROPHYSICAL OBSERVATIONS OF H2……Page 619
16.5.1 ROTATIONAL SPECTRA……Page 621
16.6 LIMIT ONTHE TIME VARIATION OF µ FROM THE INVERSION SPECTRUM OF AMMONIA……Page 622
16.7 EXPERIMENT WITH SF6……Page 626
16.8.1 MOLECULES WITH QUASIDEGENERATE HYPERFINE AND ROTATIONAL LEVELS……Page 627
16.8.2 MOLECULES WITH QUASIDEGENERATE FINE-STRUCTURE AND VIBRATIONAL LEVELS……Page 628
16.8.3 THE MOLECULAR ION HfF+……Page 630
16.8.4 ESTIMATE OF THE NATURAL WIDTHS OF THE QUASIDEGENERATE STATES……Page 631
16.9 PROPOSED EXPERIMENTS WITH Cs2 AND Sr2……Page 632
16.10 EXPERIMENTS WITH HYDROGEN MOLECULAR IONS H2+ AND HD+……Page 635
16.11 CONCLUSIONS……Page 636
REFERENCES……Page 637
Part VI: Quantum Computing……Page 643
17.1 INTRODUCTION……Page 644
17.2.1 QUANTUM INFORMATION AND ENTANGLED STATES……Page 646
17.2.2 PLATFORMS TO IMPLEMENT QUANTUM COMPUTERS……Page 647
17.2.3 WISHLIST: PROPERTIES OF POLAR MOLECULES……Page 649
17.3.1 GENERAL NOTIONS……Page 650
17.3.2 EXPERIMENTAL PARAMETERS AND DECOHERENCE……Page 652
17.4.1 GENERAL NOTIONS……Page 653
17.4.2.1 Dipole–Dipole Interaction Strength……Page 658
17.4.2.3 Trap-Induced Decoherence……Page 659
17.5.1 SUPERCONDUCTING MICROWAVE RESONATORS……Page 660
17.5.2 OPTICAL QUANTUM COMPUTING IN POLAR ENSEMBLES……Page 661
REFERENCES……Page 662
Part VII: Cold Molecular Ions……Page 664
CONTENTS……Page 665
18.1 INTRODUCTION……Page 666
18.2 SYMPATHETIC COOLING……Page 667
18.3.1 RADIO-FREQUENCY ION TRAPS……Page 668
18.3.3 MOLECULAR ION PRODUCTION……Page 670
18.4.1 MOLECULAR DYNAMICS SIMULATIONS……Page 672
18.4.2 COLLISIONAL HEATING OF ION CRYSTALS……Page 678
18.4.3 HEATING EFFECTS IN MULTISPECIES ENSEMBLES……Page 680
18.5.1 CRYSTAL SHAPES……Page 684
18.5.2 PARTICLE IDENTIFICATION: DESTRUCTIVE AND NONDESTRUCTIVE……Page 686
18.5.3 MOTIONAL RESONANCE COUPLING……Page 688
18.5.4 SPECIES-SELECTIVE ION REMOVAL……Page 690
18.6.1 ION-NEUTRAL CHEMICAL REACTIONS……Page 692
18.6.1.1 Reactions of Laser-Cooled Atomic Ions……Page 693
18.6.1.2 Reactions of Molecular Ions……Page 695
18.6.2 PHOTOFRAGMENTATION OF POLYATOMIC MOLECULES……Page 700
18.7.1 ROVIBRATIONAL SPECTROSCOPY……Page 702
18.7.2 MOLECULAR THERMOMETRY……Page 707
18.7.4 SUB-MHz ACCURACY INFRARED SPECTROSCOPY OF HD+ IONS……Page 709
18.8 SUMMARY AND OUTLOOK……Page 711
ACKNOWLEDGMENTS……Page 712
REFERENCES……Page 713

Reviews

There are no reviews yet.

Be the first to review “Cold molecules: theory, experiment, applications”
Shopping Cart
Scroll to Top