Bernard Beauzamy (Eds.)0444864164, 9780444864161
Table of contents :
Content:
Edited by
Page iii
Copyright page
Page iv
Introduction
Pages v-viii
Chapter 0 Notations and Preliminaries
Pages 1-4
Chapter I Baire’s Property and its Consequences
Pages 7-16
Chapter II Infinite-Dimensional Normed Spaces
Pages 17-48
Chapter III Reflexive Banach Spaces; Separable Banach Spaces
Pages 49-65
Chapter I Hilbert Spaces
Pages 69-78
Chapter II Schauder Bases in Banach Spaces
Pages 79-98
Chapter III Complemented Subspaces in Banach Spaces
Pages 99-106
Chapter IV The Banach Spaces lp(1 ≤ p ≤ + ∞) and c0
Pages 107-122
Chapter V Extreme Points of Compact Convex Sets and the Banach Spaces (K)
Pages 123-135
Chapter VI the Banach Spaces Lp (Ω, , μ), 1 ≤ p < + ∞
Pages 137-172
Part 3 Some Metric Properties in Banach Spaces
Pages 173-174
Chapter I Strict Convexity and Smoothness
Pages 175-187
Chapter II Uniform Convexity and Uniform Smoothness
Pages 189-214
Part 4 The Geometry of Super-Reflexive Banach Spaces
Pages 215-216
Chapter I Finite Representability and Super-Properties of Banach Spaces
Pages 217-242
Chapter II Basic Sequences in Super-Reflexive Banach Spaces
Pages 243-254
Chapter III Uniformly Non-Square and J-Convex Banach Spaces
Pages 255-271
Chapter IV Renorming Super-Reflexive Banach Spaces
Pages 273-299
Bibliography
Pages 301-304
Index
Pages 305-308
Reviews
There are no reviews yet.