Cold molecules: theory, experiment, applications

Free Download

Authors:

Edition: 1

ISBN: 1420059033, 9781420059038

Size: 22 MB (23504582 bytes)

Pages: 751/751

File format:

Language:

Publishing Year:

Roman Krems, Bretislav Friedrich, William C Stwalley1420059033, 9781420059038

The First Book on Ultracold Molecules

Cold molecules offer intriguing properties on which new operational principles can be based (e.g., quantum computing) or that may allow researchers to study a qualitatively new behavior of matter (e.g., Bose-Einstein condensates structured by the electric dipole interaction). This interdisciplinary book discusses novel methods to create and confine molecules at temperatures near absolute zero (1 microKelvin to 1 Kelvin) and surveys the research done with and on cold molecules to date. It is evident that this research has irreversibly changed atomic, molecular, and optical physics and quantum information science. Its impact on condensed-matter physics, astrophysics, and physical chemistry is becoming apparent as well. This monograph provides seasoned researchers as well as students entering the field with a valuable companion, one which, in addition, will help to foster their identity within their institutions and the physics and chemistry communities at large.

Features a foreword by Nobel Laureate Dudley Herschbach


Table of contents :
Cover Page……Page 1
Title: COLD MOLECULES: Theory, Experiment, Applications……Page 3
ISBN 978-1420059038……Page 4
Contents……Page 5
Foreword……Page 8
Acknowledgments……Page 10
COLD MOLECULES ARE HOT……Page 11
COLLISIONS OF COLD AND ULTRACOLD MOLECULES……Page 12
PHOTOASSOCIATION OF ULTRACOLD ATOMS……Page 14
FEW- AND MANY-BODY PHYSICS WITH COLD MOLECULES……Page 16
COOLING AND TRAPPING OF PREEXISTING MOLECULES……Page 18
TESTS OF FUNDAMENTAL PHYSICS WITH COLD MOLECULES……Page 21
QUANTUM COMPUTING WITH COLD MOLECULES……Page 22
MUCH OF THE ABOVE WITH COLD MOLECULAR IONS……Page 23
PROSPECTS……Page 24
Editors……Page 25
Contributors……Page 26
Part I: Cold Collisions……Page 30
CONTENTS……Page 32
1.2.1 LABORATORY AND CENTER OF MASS COORDINATES……Page 33
1.2.2 CROSS-SECTIONS AND RATE COEFFICIENTS……Page 34
1.2.3 ELASTIC, INELASTIC, AND REACTIVE SCATTERING……Page 35
1.3.1 SINGLE-CHANNEL SCATTERING (FOR UNSTRUCTURED ATOMS)……Page 36
1.3.1.2 Low-Energy Collisions……Page 40
1.3.1.3 Numerical Methods……Page 42
1.3.2.1 Atom–Diatom Scattering……Page 44
1.3.2.2 Scattering of Metastable Helium Atoms……Page 45
1.3.3 COUPLED EQUATIONS……Page 46
1.3.3.2 Numerical Methods for Scattering……Page 48
1.3.3.3 Decoupling Approximations……Page 49
1.3.3.5 Numerical Methods for Bound States……Page 50
1.3.4 QUASIBOUND STATES AND SCATTERING RESONANCES……Page 52
1.3.5 LOW-ENERGY SCATTERING……Page 54
1.3.6 COLLISIONS IN EXTERNAL FIELDS……Page 55
1.3.6.1 Basis Sets without Total Angular Momentum……Page 56
1.3.6.3 Zero-Energy Feshbach Resonances……Page 57
1.4 REACTIVE SCATTERING……Page 59
1.4.1 LANGEVIN MODEL FOR BARRIERLESS REACTIONS……Page 61
REFERENCES……Page 63
2.1 GENERAL REMARKS……Page 68
2.2 REVIEW OF CLASSICAL DIPOLES……Page 69
2.3.1 ATOMS……Page 71
2.3.2 ROTATING MOLECULES……Page 74
2.3.3 MOLECULES WITH LAMBDA-DOUBLING……Page 77
2.4 THE FIELD DUE TO A DIPOLE……Page 80
2.4.1 EXAMPLE: j = 1/2……Page 82
2.4.2 EXAMPLE: j = 1……Page 84
2.5 INTERACTION OF DIPOLES……Page 86
2.5.1 POTENTIAL MATRIX ELEMENTS……Page 87
2.5.2 ADIABATIC POTENTIAL ENERGY SURFACES IN TWO DIMENSIONS……Page 90
2.5.3 EXAMPLE: j = 1/2 MOLECULES……Page 91
2.5.4 ADIABATIC POTENTIAL ENERGY CURVES IN ONE DIMENSION: PARTIAL WAVES……Page 94
2.5.5 ASYMPTOTIC FORM OF THE INTERACTION……Page 95
REFERENCES……Page 96
CONTENTS……Page 98
3.1 INTRODUCTION……Page 99
3.2.1.1 Collisions at Cold and Ultracold Temperatures……Page 100
3.2.1.2 Shape Resonances in Molecular Collisions……Page 108
3.2.1.3 Feshbach Resonances in Molecular Collisions……Page 109
3.2.2 QUASIRESONANT TRANSITIONS……Page 111
3.2.3 ATOM–MOLECULAR ION COLLISIONS……Page 112
3.3 CHEMICAL REACTIONS AT ULTRACOLD TEMPERATURES……Page 113
3.3.1 TUNNELING-DOMINATED REACTIONS……Page 115
3.3.1.1 Reactions at Zero Temperature……Page 116
3.3.1.2 Feshbach Resonances in Reactive Scattering……Page 121
3.3.2.1 Collision Systems of Three Alkali Metal Atoms……Page 124
3.3.2.2 Role of PES in Determining Ultracold Reactions……Page 130
3.3.2.3 Relaxation of Vibrationally Excited Alkali Metal Dimers……Page 133
3.3.2.4 Reactions of Heteronuclear and Isotopically Substituted Alkali-Metal Dimer Systems……Page 135
3.4.1 MOLECULES IN THE GROUND VIBRATIONAL STATE……Page 137
3.4.2 VIBRATIONALLY INELASTIC TRANSITIONS……Page 141
3.5 SUMMARY AND OUTLOOK……Page 144
ACKNOWLEDGMENTS……Page 145
REFERENCES……Page 146
4.1 INTRODUCTION……Page 154
4.2 COLLISIONS IN MAGNETIC TRAPS……Page 155
4.2.1 ZEEMAN RELAXATION……Page 156
4.2.2 TUNABLE SHAPE RESONANCES……Page 160
4.3.1 STARK RELAXATION……Page 163
4.3.2 SCATTERING OF MOLECULAR DIPOLES……Page 165
4.3.3 ELECTRIC-FIELD-INDUCED RESONANCES……Page 166
4.4 COLLISIONS IN SUPERIMPOSED ELECTRIC AND MAGNETIC FIELDS……Page 167
4.4.1 EFFECTS OF ELECTRIC FIELDS ON MAGNETIC FESHBACH RESONANCES……Page 169
4.4.2 COLLISIONS NEAR TUNABLE AVOIDED CROSSINGS……Page 170
4.4.3 EFFECTS OF FIELD ORIENTATIONS……Page 173
4.4.4 DIFFERENTIAL SCATTERING IN ELECTROMAGNETIC FIELDS……Page 179
4.5 COLLISIONS IN RESTRICTED GEOMETRIES……Page 185
4.6 COLD CONTROLLED CHEMISTRY……Page 191
REFERENCES……Page 193
Part II: Photoassociation……Page 196
CONTENTS……Page 198
5.1.2 THE PROCESS OF PHOTOASSOCIATION……Page 199
5.1.3.1 Like Atoms……Page 201
5.1.3.2 Unlike Atoms……Page 211
5.1.3.3 Involving Molecules……Page 217
5.1.3.4 In a Quantum Degenerate Gas……Page 218
5.1.3.5 In an Electromagnetic Field……Page 221
5.1.3.6 In an Optical Lattice……Page 222
5.2.1 LEVELS NEAR DISSOCIATION……Page 223
5.2.2.1 Production by Photoassociation……Page 230
5.2.2.2 Enhancement in Double-Minimum Potentials……Page 231
5.2.2.3 Enhancement by Resonant Coupling of Excited States……Page 233
5.2.2.4 Stimulated Raman Transfer to Deeply Bound Levels……Page 235
5.3.1 ULTRACOLD MOLECULAR IONS……Page 237
5.3.2 TESTS OF FUNDAMENTAL PHYSICAL CONSTANTS AND SYMMETRIES……Page 238
5.3.4 ULTRACOLD COLLISIONS AND CHEMISTRY……Page 239
REFERENCES……Page 240
6.1 INTRODUCTION……Page 250
6.2 PROPERTIES FOR A SINGLE POTENTIAL……Page 252
6.3 INTERACTIONS FOR MULTIPLE POTENTIALS……Page 259
6.4 MAGNETICALLY TUNABLE RESONANCES……Page 262
6.5 PHOTOASSOCIATION……Page 267
REFERENCES……Page 270
CONTENTS……Page 274
7.1.1 MAKING ULTRACOLD MOLECULES BY PHOTOASSOCIATION OF ULTRACOLD ATOMS……Page 276
7.1.3 OUTLINE OF THE PRESENT CHAPTER……Page 277
7.2.1.1 Choice of Cs2 as a Case Study……Page 278
7.2.1.3 Timescales and Characteristic Distances for the Vibrational Motion in the Excited State……Page 280
7.2.1.4 Description of the Initial Collision State……Page 281
7.2.2.1 The Chirped Pulse, Central Frequency, Energy, Spectral, and Temporal Widths……Page 283
7.2.3 THE TWO-CHANNEL COUPLED EQUATIONS AND THE CHOICE FOR A ROTATING WAVE APPROXIMATION……Page 285
7.2.3.1 Rotating Wave Approximation with the Instantaneous Frequency: Definition of the Photoassociation Window……Page 287
7.2.3.2 Rotating Wave Approximation with the Central Frequency……Page 288
7.3.1 NUMERICAL METHOD……Page 289
7.3.2.2 Formation of Halo Molecules via Optically Induced Feshbach Resonance……Page 290
7.3.2.3 Selectivity of the Resonance Window: Dependence of the Final Distribution of Population on the Pulse Parameters……Page 291
7.3.3 ANALYSIS WITHIN A TWO-STATE MODEL: THE CONCEPT OF ADIABATIC TRANSFER WITHIN A PHOTOASSOCIATION WINDOW……Page 293
7.3.4 AVERAGING OVER INITIAL VELOCITY DISTRIBUTION: USE OF SCALING LAWS……Page 295
7.3.4.2 Average Introducing Box-Independent Energy-Normalized States: Use of a Scaling Law Near Threshold……Page 296
7.3.5 WHAT IS THE ABSOLUTE NUMBER OF PHOTOASSOCIATED MOLECULES?……Page 297
7.3.6 TRANSIENT EFFECTS……Page 299
7.4 SHAPING VIBRATIONAL WAVEPACKETS IN THE EXCITED STATE TO OPTIMIZE STABILIZATION INTO DEEPLY BOUND LEVELS OF THE LOWER STATE……Page 300
7.4.2 PROPOSAL FOR A TWO-COLOR PUMP–DUMP EXPERIMENT……Page 301
7.4.2.1 The Time-Dependent Franck–Condon Overlap……Page 302
7.4.2.2 A Two-Color Experiment for Creating Stable Molecules……Page 303
7.5.1 PHENOMENOLOGICAL OBSERVATION OF A DEPLETION HOLE, A MOMENTUM KICK, AND A COMPRESSION EFFECT……Page 305
7.5.2 ANALYSIS OF THE MOMENTUM TRANSFER WITH PARTIALLY INTEGRATED MASS CURRENT AND POPULATION……Page 307
7.5.3 ADVANTAGE OF THE COMPRESSION EFFECT FOR PHOTOASSOCIATION WITH A SECOND PULSE……Page 308
7.5.4.2 Correlated Pairs of Hot Atoms……Page 310
7.6.1 CONTROLLING THE COMPRESSION EFFECT WITH A NONIMPULSIVE PULSE INDUCING MANY RABI CYCLES……Page 312
7.6.2.2 Thermal Average……Page 313
7.7 CONCLUSION AND PROSPECTS FOR THE NEAR FUTURE……Page 315
REFERENCES……Page 316
8.1 INTRODUCTION……Page 320
8.2 ADIABATIC RAMAN PHOTOASSOCIATION……Page 321
8.3.1 TWO-STATE DESCRIPTION OF MULTICHANNEL PHOTOASSOCIATION……Page 323
8.3.2 ARPA AS A PROJECTIVE MEASUREMENT……Page 329
8.4.1 SINGLE-CHANNEL ARPA OF A CHOSEN WAVE FORM……Page 331
8.4.2 THERMAL AVERAGING……Page 333
8.4.3 PA OF A SUPERPOSITION STATE: DETERMINING THE MULTICHANNEL STRUCTURE……Page 335
8.5 MOLECULAR DATA……Page 337
8.6 CONCLUSIONS……Page 340
REFERENCES……Page 341
Part III: Few- and Many-Body Physics……Page 346
9.1 INTRODUCTION……Page 348
9.1.1 ULTRACOLD ATOMS AND QUANTUM GASES……Page 349
9.1.2 BASIC PHYSICS OF A FESHBACH RESONANCE……Page 350
9.1.3 BINDING ENERGY REGIMES……Page 352
9.2.1 BOSONS AND FERMIONS: ROLE OF QUANTUM STATISTICS……Page 354
9.2.2 OVERVIEW OF ASSOCIATION METHODS……Page 356
9.2.4 DETECTION METHODS……Page 358
9.3.1 AVOIDED LEVEL CROSSINGS……Page 360
9.3.2 CRUISING THROUGH THE MOLECULAR SPECTRUM……Page 362
9.4 HALO DIMERS……Page 364
9.4.1 HALO DIMERS AND UNIVERSALITY……Page 365
9.4.2 COLLISIONAL PROPERTIES AND FEW-BODY PHYSICS……Page 366
9.4.3 EFIMOV THREE-BODY STATES……Page 368
9.4.4 MOLECULAR BEC……Page 370
9.5 TOWARD GROUND-STATE MOLECULES……Page 371
9.5.1 STIMULATED RAMAN ADIABATIC PASSAGE……Page 372
9.5.2 STIRAP EXPERIMENTS……Page 373
9.6 FURTHER DEVELOPMENTS AND CONCLUDING REMARKS……Page 376
ACKNOWLEDGMENTS……Page 377
REFERENCES……Page 378
10.1.1 STATE OF THE ART……Page 384
10.1.2 FESHBACH RESONANCES AND DIATOMIC MOLECULES……Page 386
10.2.1 WEAKLY INTERACTING GAS OF BOSONIC MOLECULES: MOLECULE–MOLECULE ELASTIC INTERACTION……Page 389
10.2.2 SUPPRESSION OF COLLISIONAL RELAXATION……Page 394
10.2.3 COLLISIONAL STABILITY AND MOLECULAR BEC……Page 397
10.3.1 EFFECT OF MASS RATIO ON ELASTIC INTERMOLECULAR INTERACTION……Page 399
10.3.2 COLLISIONAL RELAXATION FOR MODERATE MASS RATIOS……Page 402
10.3.3 BORN–OPPENHEIMER PICTURE OF COLLISIONAL RELAXATION……Page 403
10.3.4 MOLECULES OF HEAVY AND LIGHT FERMIONIC ATOMS……Page 405
10.3.5 TRIMER STATES……Page 408
10.3.6 COLLISIONAL RELAXATION OF MOLECULES OF HEAVY AND LIGHT FERMIONS AND FORMATION OF TRIMERS……Page 410
10.4.1 BORN–OPPENHEIMER POTENTIAL IN A MANY-BODY SYSTEM OF MOLECULES OF HEAVY AND LIGHT FERMIONS……Page 416
10.4.2 GAS–CRYSTAL QUANTUM TRANSITION……Page 419
10.4.3 MOLECULAR SUPERLATTICE IN AN OPTICAL LATTICE……Page 420
10.5 CONCLUDING REMARKS AND PROSPECTS……Page 421
REFERENCES……Page 422
11.1 INTRODUCTION……Page 428
11.2.1 ZEEMAN EFFECT IN THE HYPERFINE STRUCTURE OF ALKALI–METAL ATOMS……Page 429
11.2.3 SINGLET AND TRIPLET POTENTIALS……Page 431
11.2.4 BOUND STATES AND SCATTERING RESONANCES……Page 433
11.3.1 TWO-CHANNEL TWO-POTENTIAL APPROACH……Page 435
11.3.2 TWO-CHANNEL SINGLE-RESONANCE APPROACH……Page 436
11.4.1 RESONANCE WIDTH AND BACKGROUND-SCATTERING LENGTH……Page 438
11.4.2 RELATION BETWEEN BOUND-STATE ENERGY AND RESONANCE POSITION……Page 439
11.5.1 CLOSED-CHANNEL DOMINATED RESONANCES……Page 441
11.5.2 ENTRANCE-CHANNEL DOMINATED RESONANCES……Page 443
REFERENCES……Page 445
12.1 INTRODUCTION……Page 450
12.2.1 EFFECTIVE MANY-BODY HAMILTONIANS……Page 452
12.2.2 SELF-ASSEMBLED CRYSTALS……Page 454
12.2.3 BLUE-SHIELDING AND THREE-BODY INTERACTIONS……Page 456
12.2.4 HUBBARD LATTICE MODELS……Page 459
12.2.5 LATTICE SPIN MODELS……Page 460
12.2.6 HUBBARD MODELS IN SELF-ASSEMBLED DIPOLAR LATTICES……Page 462
12.3.1.1 Rotational Spectrum……Page 465
12.3.1.2 Coupling to External Electric Fields……Page 466
12.3.2 TWO MOLECULES……Page 467
12.3.2.1 Designing the Repulsive 1/r3 Potential in 2D……Page 468
12.3.2.2 Designing ad hoc Potentials with ac Fields……Page 473
12.4.1 TWO-DIMENSIONAL SELF-ASSEMBLED CRYSTALS……Page 476
12.4.2 FLOATING LATTICES OF DIPOLES……Page 479
12.4.3 THREE-BODY INTERACTIONS……Page 484
12.4.4 LATTICE SPIN MODELS……Page 488
REFERENCES……Page 492
Part IV: Cooling and Trapping……Page 500
CONTENTS……Page 502
13.2 BUFFER-GAS COOLING……Page 503
13.2.1.1 Laser Ablation and LIAD……Page 505
13.2.1.2 Beam Injection……Page 507
13.2.1.4 Discharge Etching……Page 509
13.2.2 ROTATIONAL AND VIBRATIONAL RELAXATION……Page 512
13.3 BUFFER-GAS LOADING OF MAGNETIC TRAPS……Page 513
13.3.1.1 Evaporative Loss……Page 514
13.3.1.2 Buffer Gas Removal……Page 516
13.3.1.3 Spin Relaxation Loss (Atoms)……Page 517
13.3.2 ZEEMAN RELAXATION COLLISIONS BETWEEN MOLECULES AND HELIUM……Page 520
13.3.2.1 Inelastic Collisions of 2sigma Molecules with He……Page 522
13.3.2.2 Inelastic Collisions of 3sigma Molecules with He……Page 523
13.4 BUFFER-GAS BEAM PRODUCTION……Page 525
13.4.1 THERMALIZATION AND EXTRACTION CONDITIONS……Page 526
13.4.2 BOOSTING CONDITION AND SLOW BEAM CONSTRAINTS……Page 527
13.4.3 STUDIES WITH DIFFUSIVELY EXTRACTED BEAMS……Page 528
13.4.4 STUDIES WITH HYDRODYNAMICALLY EXTRACTED BEAMS……Page 530
REFERENCES……Page 533
CONTENTS……Page 538
14.1 INTRODUCTION……Page 539
14.2.1 THE STARK DECELERATOR……Page 545
14.2.2 PHASE STABILITY IN THE STARK DECELERATOR……Page 547
14.2.3 TRANSVERSE FOCUSING IN A STARK DECELERATOR……Page 550
14.2.4 STARK DECELERATION OF OH RADICALS……Page 551
14.2.5 LONGITUDINAL FOCUSING OF A STARK DECELERATED MOLECULAR BEAM……Page 554
14.2.6 DECELERATION OF MOLECULES IN HIGH-FIELD SEEKING STATES……Page 556
14.3 THE ZEEMAN, RYDBERG, AND OPTICAL DECELERATOR……Page 557
14.4.1 DC TRAPPING OF MOLECULES IN LOW-FIELD SEEKING STATES……Page 559
14.4.2 STORAGE RING AND MOLECULAR SYNCHROTRON……Page 561
14.4.3 AC TRAPPING OF MOLECULES IN HIGH-FIELD SEEKING STATES……Page 562
14.5 APPLICATIONS OF DECELERATED BEAMS AND TRAPPED MOLECULES……Page 566
14.5.1 HIGH-RESOLUTION SPECTROSCOPY AND METROLOGY……Page 567
14.5.2 COLLISION STUDIES AT A TUNABLE COLLISION ENERGY……Page 569
14.5.3 DIRECT LIFETIME MEASUREMENTS OF METASTABLE STATES……Page 571
14.6 CONCLUSIONS AND OUTLOOK……Page 572
ACKNOWLEDGMENTS……Page 576
REFERENCES……Page 577
Part V: Tests of Fundamental Laws……Page 582
CONTENTS……Page 584
15.2.1 DO FUNDAMENTAL CONSTANTS VARY IN TIME?……Page 585
15.2.2 TESTING FUNDAMENTAL SYMMETRIES……Page 586
15.3 BEAMS OF COLD POLAR RADICALS……Page 589
15.3.1 APPARATUS……Page 590
15.3.2 TRANSLATIONAL TEMPERATURE AND SOURCE SIZE……Page 591
15.3.3 MOLECULAR FLUX……Page 593
15.3.4 ROTATIONAL TEMPERATURE……Page 596
15.4.1 STARK AND ZEEMAN SHIFTS OF THE HYPERFINE STATES……Page 597
15.4.2 TWO-PULSE INTERFEROMETRY OF A THREE-LEVEL SYSTEM……Page 600
15.4.3 EXPERIMENTS WITH SINGLE PULSES……Page 603
15.4.4 EXPERIMENTS WITH DOUBLE PULSES……Page 605
15.5.1 INTRODUCTION……Page 609
15.5.2 A MODEL ALTERNATING GRADIENT DECELERATOR……Page 611
15.5.3 AXIAL MOTION……Page 613
15.5.4 TRANSVERSE MOTION……Page 615
15.5.5 BEYOND THE IDEAL MODEL……Page 621
REFERENCES……Page 622
CONTENTS……Page 626
16.1 INTRODUCTION……Page 627
16.2 THEORETICAL MOTIVATION……Page 628
16.3 DEPENDENCE OF ATOMIC AND MOLECULAR SPECTRA ON alpha AND µ……Page 629
16.4 ASTROPHYSICAL OBSERVATIONS OF H2……Page 631
16.5.1 ROTATIONAL SPECTRA……Page 633
16.6 LIMIT ONTHE TIME VARIATION OF µ FROM THE INVERSION SPECTRUM OF AMMONIA……Page 634
16.7 EXPERIMENT WITH SF6……Page 638
16.8.1 MOLECULES WITH QUASIDEGENERATE HYPERFINE AND ROTATIONAL LEVELS……Page 639
16.8.2 MOLECULES WITH QUASIDEGENERATE FINE-STRUCTURE AND VIBRATIONAL LEVELS……Page 640
16.8.3 THE MOLECULAR ION HfF+……Page 642
16.8.4 ESTIMATE OF THE NATURAL WIDTHS OF THE QUASIDEGENERATE STATES……Page 643
16.9 PROPOSED EXPERIMENTS WITH Cs2 AND Sr2……Page 644
16.10 EXPERIMENTS WITH HYDROGEN MOLECULAR IONS H2+ AND HD+……Page 647
16.11 CONCLUSIONS……Page 648
REFERENCES……Page 649
Part VI: Quantum Computing……Page 656
17.1 INTRODUCTION……Page 658
17.2.1 QUANTUM INFORMATION AND ENTANGLED STATES……Page 660
17.2.2 PLATFORMS TO IMPLEMENT QUANTUM COMPUTERS……Page 661
17.2.3 WISHLIST: PROPERTIES OF POLAR MOLECULES……Page 663
17.3.1 GENERAL NOTIONS……Page 664
17.3.2 EXPERIMENTAL PARAMETERS AND DECOHERENCE……Page 666
17.4.1 GENERAL NOTIONS……Page 667
17.4.2.1 Dipole–Dipole Interaction Strength……Page 672
17.4.2.3 Trap-Induced Decoherence……Page 673
17.5.1 SUPERCONDUCTING MICROWAVE RESONATORS……Page 674
17.5.2 OPTICAL QUANTUM COMPUTING IN POLAR ENSEMBLES……Page 675
REFERENCES……Page 676
Part VII: Cold Molecular Ions……Page 678
CONTENTS……Page 680
18.1 INTRODUCTION……Page 681
18.2 SYMPATHETIC COOLING……Page 682
18.3.1 RADIO-FREQUENCY ION TRAPS……Page 683
18.3.3 MOLECULAR ION PRODUCTION……Page 685
18.4.1 MOLECULAR DYNAMICS SIMULATIONS……Page 687
18.4.2 COLLISIONAL HEATING OF ION CRYSTALS……Page 693
18.4.3 HEATING EFFECTS IN MULTISPECIES ENSEMBLES……Page 695
18.5.1 CRYSTAL SHAPES……Page 699
18.5.2 PARTICLE IDENTIFICATION: DESTRUCTIVE AND NONDESTRUCTIVE……Page 701
18.5.3 MOTIONAL RESONANCE COUPLING……Page 703
18.5.4 SPECIES-SELECTIVE ION REMOVAL……Page 705
18.6.1 ION-NEUTRAL CHEMICAL REACTIONS……Page 707
18.6.1.1 Reactions of Laser-Cooled Atomic Ions……Page 708
18.6.1.2 Reactions of Molecular Ions……Page 710
18.6.2 PHOTOFRAGMENTATION OF POLYATOMIC MOLECULES……Page 715
18.7.1 ROVIBRATIONAL SPECTROSCOPY……Page 717
18.7.2 MOLECULAR THERMOMETRY……Page 722
18.7.4 SUB-MHz ACCURACY INFRARED SPECTROSCOPY OF HD+ IONS……Page 724
18.8 SUMMARY AND OUTLOOK……Page 726
ACKNOWLEDGMENTS……Page 727
REFERENCES……Page 728
A……Page 734
B……Page 735
C……Page 736
E……Page 738
F……Page 739
H……Page 740
I……Page 741
M……Page 742
N……Page 743
P……Page 744
R……Page 745
S……Page 746
T……Page 748
V……Page 749
W,Z……Page 750
Back Page……Page 751

Reviews

There are no reviews yet.

Be the first to review “Cold molecules: theory, experiment, applications”
Shopping Cart
Scroll to Top