Julius Wess, Jonathan Bagger0691085560, 9780691085562, 0691025304
Table of contents :
Title ……Page 1
Princeton Series in Physics ……Page 2
Title page ……Page 3
Date-line ……Page 4
Dedication ……Page 5
CONTENTS ……Page 7
PREFACE TO THE SECOND EDITION ……Page 9
PREFACE ……Page 10
I. WHY SUPERSYMMETRY? ……Page 12
II. REPRESENTATIONS OF THE SUPERSYMMETRY ALGEBRA ……Page 20
III. COMPONENT FIELDS ……Page 30
IV. SUPERFIELDS ……Page 34
V. CHIRAL SUPERFIELDS ……Page 39
VI. VECTOR SUPERFIELDS ……Page 45
VII. GAUGE INVARIANT INTERACTIONS ……Page 52
VIII. SPONTANEOUS SYMMETRY BREAKING ……Page 60
IX. SUPERFIELD PROPAGATORS ……Page 70
X. FEYNMAN RULES FOR SUPERGRAPHS ……Page 88
XI. NONLINEAR REALIZATIONS ……Page 97
XII. DIFFERENTIAL FORMS IN SUPERS PACE ……Page 102
XIII. GAUGE THEORIES REVISITED ……Page 110
XIV. VIELBEIN, TORSION, AND CURVATURE ……Page 118
XV. BIANCHI IDENTITIES ……Page 126
XVI. SUPERGAUGE TRANSFORMATIONS ……Page 136
XVII. THE $theta = bartheta = 0$ COMPONENTS OF THE VIELBEIN, CONNECTION, TORSION, AND CURVATURE ……Page 141
XVIII. THE SUPERGRA VITY MULTIPLET ……Page 149
XIX. CHIRAL AND VECTOR SUPERFIELDS IN CURVED SPACE ……Page 155
XX. NEW $Theta$ VARIABLES AND THE CHIRAL DENSITY ……Page 164
XXI. THE MINIMAL CHIRAL SUPERGRAVITY MODEL ……Page 171
XXII. CHIRAL MODELS AND KAEHLER GEOMETRY ……Page 184
XXIII. GENERAL CHIRAL SUPERGRAVITY MODELS ……Page 189
XXIV. GAUGE INVARIANT MODELS ……Page 201
XXV. GAUGE INVARIANT SUPERGRAVITY MODELS ……Page 213
XXVI. LOW-ENERGY THEOREMS ……Page 226
APPENDIX A: Notation and Spinor Algebra ……Page 234
APPENDIX B: Results in Spinor Algebra ……Page 241
APPENDIX C: Kaehler Geometry ……Page 244
APPENDIX D: Isometries and Kaehler Geometry ……Page 248
APPENDIX E: Nonlinear Realizations ……Page 254
APPENDIX F: Nonlinear Realizations and Invariant Actions ……Page 262
APPENDIX G: Gauge Invariant Supergravity Models ……Page 265
Reviews
There are no reviews yet.