Donald Neamen9780072321074, 0072321075
Table of contents :
SEMICONDUCTOR PHYSICS AND DEVICES: BASIC PRINCIPLES……Page 3
CONTENTS I N B R I E F……Page 5
CONTENTS……Page 6
PREFACE……Page 11
P R O L O G U E……Page 17
1.1 SEMICONDUCTOR MATERIALS……Page 23
1.2 TYPES OF SOLIDS……Page 24
1.3.1 Primitive and Unit Cell……Page 25
1.3.2 Basic Crystal Structures……Page 26
1.3.3 Crystal Planes and Miller Indices……Page 27
1.3.4 The Diamond Structure……Page 31
1.4 ATOMIC BONDING……Page 33
1.5.1 Imperfections in Solids……Page 35
1.5.2 Impurities in Solids……Page 37
1.6.1 Growth from a Melt……Page 38
1.6.2 Epitaxial Growth……Page 40
1.7 SUMMARY……Page 41
REVIEW QUESTIONS……Page 42
PROBLEMS……Page 43
READING LIST……Page 45
2. Introduction to Quantum Mechanics……Page 46
2.1.1 Energy Quanta……Page 47
2.1.2 Wave-Particle Duality……Page 48
2.1.3 The Uncertainty Principle……Page 51
2.2.1 The Wave Equation……Page 52
2.2.3 Boundary Conditions……Page 54
2.3.1 Electron in Free Space……Page 55
2.3.2 The Infinite Potential Well……Page 56
2.3.3 The Step Potential Function……Page 60
2.3.4 The Potential Barrier……Page 64
2.4.1 The One-Electron Atom……Page 67
2.4.2 The Periodic Table……Page 70
CHECKPOINT……Page 72
PROBLEMS……Page 73
READING LIST……Page 77
3. Introduction to the Quantum Theory of Solids……Page 78
3.1.1 Formation of Energy Bands……Page 79
3.1.2 The Kronig-Penney Model……Page 83
3.1.3 The k-Space Diagram……Page 88
3.2.1 The Energy Band and the Bond Model……Page 92
3.2.2 Drift Current……Page 94
3.2.3 Electron Effective Mass……Page 95
3.2.4 Concept of the Hole……Page 98
3.2.5 Metals, Insulators, and Semiconductors……Page 101
3.3 EXTENSION TO THREE DIMENSIONS……Page 102
3.3.1 The k-Space Diagrams of Si and GaAs……Page 103
3.3.2 Additional Effective Mass Concepts……Page 104
3.4.1 Mathematical Derivation……Page 105
3.4.2 Extension to Semiconductors……Page 108
3.5 STATISTICAL MECHANICS……Page 110
3.5.2 The Fermi-Dirac Probability Function……Page 111
3.5.3 The Distribution Function and the Fermi Energy……Page 113
3.6 SUMMARY……Page 118
GLOSSARY OF IMPORTANT TERMS……Page 119
PROBLEMS……Page 120
READING LIST……Page 124
4. The Semiconductor in Equilibrium……Page 125
4.1.1 Equilibrium Distribution of Electrons and Holes……Page 126
4.1.2 The no andpo Equations……Page 128
4.1.3 The Intrinsic Carrier Concentration……Page 132
4.1.4 The Intrinsic Fermi-Level Position……Page 136
4.2.1 Qualitative Description……Page 137
4.2.2 Ionization Energy……Page 139
4.2.3 Group III-V Semiconductors……Page 141
4.3.1 Equilibrium Distribution of Electrons and Holes……Page 143
4.3.2 The nope Product……Page 146
4.3.3 The Fed-Dirac Integral……Page 147
4.3.4 Degenerate and Nondegenerate Semiconductors……Page 149
4.4.1 Probability Function……Page 150
4.4.2 Complete Ionization and Freeze-Out……Page 151
4.5 CHARGE NEUTRALITY……Page 154
4.5.2 Equilibrium Electron and Hole Concentrations……Page 155
4.6.1 Mathematical Derivation……Page 161
4.6.2 Variation of EF with Doping Concentration and Temperature……Page 164
4.6.3 Relevance of the Fermi Energy……Page 166
4.7 SUMMARY……Page 167
GLOSSARY OF IMPORTANT TERMS……Page 168
REVIEW QUESTIONS……Page 169
PROBLEMS……Page 170
READING LIST……Page 174
5.1 CARRIER DRIFT……Page 176
5.1.1 Drift Current Density……Page 177
5.1.2 Mobility Effects……Page 179
5.1.3 Conductivity……Page 184
5.1.4 Velocity Saturation……Page 189
5.2 CARRIER DIFFUSION……Page 191
5.2.1 Diffusion Current Density……Page 192
5.3 GRADED IMPURITY DISTRIBUTION……Page 195
5.3.1 Induced Electric Field……Page 196
5.3.2 The Einstein Relation……Page 198
5.4 THE HALL EFFECT……Page 199
5.5 SUMMARY……Page 201
GLOSSARY OF IMPORTANT TERMS……Page 202
PROBLEMS……Page 203
READING LIST……Page 209
Reviews
There are no reviews yet.