V. V. Tuchin9781402078866, 1402078862
Table of contents :
HOW TO GO TO YOUR PAGE……Page 2
COHERENT-DOMAIN OPTICAL METHODS, VOLUME 1……Page 5
Contents……Page 7
Contributing Authors……Page 13
Preface……Page 17
Acknowledgments……Page 23
PART I: SPECKLE AND POLARIZATION TECHNOLOGIES……Page 25
1.1 Introduction: Interference and Polarization Phenomena at Multiple Scattering……Page 27
1.2 Temporal and Angular Correlations of Light Scattered by Disordered Media……Page 29
1.3 Damping of Polarization of Light Propagating through the Disordered Media……Page 33
1.4 Industrial and Biomedical Applications……Page 49
References……Page 62
2.1 Introduction……Page 67
2.2 Theoretical Background……Page 70
2.3 Computer Simulation……Page 74
2.4 Dimensional Characteristics of Objects and Fields……Page 82
2.5 Experimental Study……Page 87
2.6 Singular Optics Concept……Page 93
2.7 Zerogram Technique……Page 99
2.8 Optical Correlation Technique……Page 105
2.9 Conclusions……Page 113
References……Page 114
3.1 Introduction……Page 117
3.2 Optical Models of Tissue Architectonics……Page 119
3.3 Polarization and Coherent Imaging……Page 123
3.4 Stokes-Correlometry of Tissues……Page 138
3.5 Wavelet-Analysis of Coherent Images……Page 148
3.6 Summary……Page 158
References……Page 160
4.1 Introduction……Page 163
4.2 Skin Structure and Sampling Volume……Page 166
4.3 Principles of the Diffusing Wave Spectroscopy……Page 168
4.4 DWS Experimental Approach and Data Analysis……Page 172
4.5 Main Results and Discussion……Page 174
4.6 Summary……Page 182
References……Page 183
5.1 Introduction……Page 189
5.2 Principles of Laser Speckle Imaging……Page 190
5.3 Instrumentation and Performances……Page 193
5.4 Applications……Page 194
5.5 A Modified Laser Speckle Imaging Method with Improved Spatial Resolution……Page 206
5.6 Conclusion……Page 214
References……Page 216
PART II: HOLOGRAPHY, INTERFEROMETRY, HETERODYNING……Page 221
6.1 Introduction to Low Coherence Holography……Page 223
6.2 Phase-Stepping Interferometric Imaging……Page 227
6.3 Off-Axis Holography……Page 229
6.4 Photorefractive Holography……Page 235
6.5 Conclusions and Outlook……Page 250
References……Page 253
7.1 Introduction……Page 259
7.2 Collimated Interference Fields……Page 261
7.3 Focused Spatially-Modulated Laser Beams……Page 274
7.4 Interference Fringes in Imaging Systems……Page 286
7.5 Interference Fringes Formed by Scattering Optical Elements……Page 304
7.6 Industrial and Biomedical Applications……Page 317
7.7 Summary……Page 336
References……Page 338
8.1 Introduction to Heterodyne Detection……Page 343
8.2 Optical Coherence Tomography (OCT)……Page 347
8.3 Optical Phase-Space Measurements……Page 350
8.4 Wigner Phase-Space Measurement……Page 352
8.5 Applications……Page 363
8.6 Summary……Page 374
References……Page 375
PART III: LIGHT SCATTERING METHODS……Page 377
9.1 Introduction……Page 379
9.2 Principles of Light Scattering Spectroscopy……Page 380
9.3 Applications of Light Scattering Spectroscopy……Page 383
9.4 Principles of Raman Scattering Spectroscopy……Page 397
9.5 Applications of Raman Spectroscopy……Page 398
9.6 Near-infrared Raman Spectroscopy for in vivo disease diagnosis……Page 404
9.7 Surface-Enhanced Raman Spectroscopy……Page 410
References……Page 416
10.1 Introduction……Page 421
10.2 Basic Principles of Laser Doppler and Speckle Techniques……Page 422
10.3 Biomedical Applications of Laser Doppler and Speckle Techniques……Page 437
10.4 Speckle-Correlation Measurements of Lymph Microcirculation in Rat Mesentery Vessels……Page 447
10.5 Conclusion……Page 455
References……Page 456
11.1 Introduction……Page 461
11.2 QELS and Disease Detection……Page 464
11.3 Early Detection of Ocular and Systemic Diseases……Page 468
11.4 QELS Limitations……Page 481
11.6 Conclusion……Page 483
References……Page 485
12.1 Introduction……Page 489
12.2 General Outline of the Program……Page 491
12.3 Transport Algorithms……Page 493
12.4 Scattering Functions……Page 517
12.5 Light Sources……Page 524
12.6 Detection……Page 528
12.7 Special Features……Page 533
12.8 Output Options……Page 545
12.9 Conclusions……Page 554
References……Page 555
B……Page 557
C……Page 558
D……Page 559
E……Page 560
G……Page 561
I……Page 562
L……Page 563
N……Page 564
P……Page 565
R……Page 566
S……Page 567
T……Page 569
W……Page 570
Z……Page 571
COHERENT-DOMAIN OPTICAL METHODS, VOLUME 2……Page 574
Contents……Page 576
Contributing Authors……Page 580
Preface……Page 586
Acknowledgments……Page 590
PART IV: OPTICAL COHERENCE TOMOGRAPHY……Page 592
13.1 Introduction……Page 594
13.2 Optical Coherence Tomography: The Techniques……Page 596
13.3 OCT in Imaging……Page 604
13.4 Effects of Light Scattering on OCT……Page 612
13.5 New Technique to Enhance OCT Imaging Capabilities……Page 623
13.6 Summary……Page 641
References……Page 643
14.1 Introduction……Page 652
14.2 Analytical OCT Model Based on the Extended Huygens-Fresnel Principle……Page 654
14.3 Advanced Monte Carlo Simulation of OCT Systems……Page 674
14.4 True-Reflection OCT Imaging……Page 686
14.5 Wigner Phase-Space Distribution Function for the OCT Geometry……Page 693
Appendix……Page 702
References……Page 706
15.1 Introduction……Page 710
15.2 Theoretical Aspects……Page 712
15.3 Absorption in OCT……Page 717
15.4 Dispersion in OCT……Page 733
References……Page 749
16.1 Different Scanning Procedures……Page 754
16.2 Simultaneous En-Face OCT and Confocal Imaging……Page 769
16.3 Parallel OCT……Page 772
16.4 En-Face OCT Imaging with Adjustable Depth Resolution……Page 780
16.5 En-Face OCT and 3D Imaging of Tissue……Page 782
16.6 Particularities of En-Face OCT……Page 789
16.7 En-Face Non-Scanning Systems……Page 794
References……Page 797
17.1 Introduction……Page 802
17.2 Theoretical Models for OCT Imaging……Page 803
17.3 Methods and Element Basis for PM Fiber Optical Interferometry……Page 813
17.4 Experimental OCT Systems……Page 824
17.5 Clinical Applications of OCT……Page 833
17.6 Discussion and Future Directions……Page 857
References……Page 858
18.1 Introduction……Page 862
18.2 Theory……Page 864
18.3 Determination of the Sample Polarization Properties……Page 872
18.4 Fiber Based PS-OCT systems……Page 877
18.5 Multi-Functional OCT……Page 887
18.6 PS-OCT in Ophthalmology……Page 892
18.7 Future Directions in PS-OCT……Page 901
References……Page 902
19.1 Introduction……Page 906
19.2 Principle and Technology of ODT……Page 909
19.3 Applications of ODT……Page 922
19.4 Conclusions……Page 930
References……Page 931
PART V: MICROSCOPY……Page 934
20.1 Overview of main approaches to OCM design……Page 936
20.2 Interferometer for compact OCM……Page 939
20.3 Development of broadband light source and interferometer elements……Page 941
20.4 Influence of light scattering on OCM spatial resolution……Page 943
20.5 Electro-mechanical system for dynamic focus……Page 945
20.6 Digital signal processing as a tool to improve OCM resolution……Page 948
20.7 Experimental OCM prototype……Page 949
20.8 Biomedical applications……Page 950
20.9 Summary……Page 951
References……Page 952
21.1 Introduction……Page 954
21.2 Optical Principles of Confocal Microscopy……Page 955
21.3 Types of Confocal Microscopes……Page 966
21.4 Applications to Material Sciences……Page 981
21.5 Biomedical Applications……Page 982
21.6 Comparison Between Confocal Microscopy and Mutiphoton Excitation Microscopy……Page 994
References……Page 1001
22.1 Introduction……Page 1008
22.2 Techniques……Page 1010
22.3 Application of OCT and CLSM……Page 1015
22.4 Discussion……Page 1027
References……Page 1028
B……Page 1032
C……Page 1033
D……Page 1034
E……Page 1035
F……Page 1036
I……Page 1037
L……Page 1039
M……Page 1040
O……Page 1041
P……Page 1042
S……Page 1043
T……Page 1045
W……Page 1046
X……Page 1047
Reviews
There are no reviews yet.