Albert S. Schwarz (auth.)0387547533, 9780387547534, 3540547533
Table of contents :
Front Matter….Pages I-VIII
Introduction….Pages 1-5
Definitions and Notations….Pages 6-9
Front Matter….Pages 11-11
The Simplest Lagrangians….Pages 13-16
Quadratic Lagrangians….Pages 17-18
Internal Symmetries….Pages 19-23
Gauge Fields….Pages 24-27
Particles Corresponding to Nonquadratic Lagrangians….Pages 28-29
Lagrangians of Strong, Weak and Electromagnetic Interactions….Pages 30-36
Grand Unifications….Pages 37-39
Front Matter….Pages 41-41
Topologically Stable Defects….Pages 43-55
Topological Integrals of Motion….Pages 56-61
A Two-Dimensional Model. Abrikosov Vortices….Pages 62-67
’t Hooft—Polyakov Monopoles….Pages 68-73
Topological Integrals of Motion in Gauge Theory….Pages 74-79
Particles in Gauge Theories….Pages 80-82
The Magnetic Charge….Pages 83-88
Electromagnetic Field Strength and Magnetic Charge in Gauge Theories….Pages 89-93
Extrema of Symmetric Functionals….Pages 94-96
Symmetric Gauge Fields….Pages 97-103
Estimates of the Energy of a Magnetic Monopole….Pages 104-108
Front Matter….Pages 41-41
Topologically Non-Trivial Strings….Pages 109-114
Particles in the Presence of Strings….Pages 115-121
Nonlinear Fields….Pages 122-127
Multivalued Action Integrals….Pages 128-131
Functional Integrals….Pages 132-137
Applications of Functional Integrals to Quantum Theory….Pages 138-145
Quantization of Gauge Theories….Pages 146-157
Elliptic Operators….Pages 158-162
The Index and Other Properties of Elliptic Operators….Pages 163-168
Determinants of Elliptic Operators….Pages 169-172
Quantum Anomalies….Pages 173-182
Instantons….Pages 183-193
The Number of Instanton Parameters….Pages 194-198
Computation of the Instanton Contribution….Pages 199-206
Functional Integrals for a Theory Containing Fermion Fields….Pages 207-215
Instantons in Quantum Chromodynamics….Pages 216-220
Front Matter….Pages 221-221
Topological Spaces….Pages 223-224
Groups….Pages 225-228
Gluings….Pages 229-232
Equivalence Relations and Quotient Spaces….Pages 233-234
Front Matter….Pages 221-221
Group Representations….Pages 235-240
Group Actions….Pages 241-244
The Adjoint Representation of a Lie Group….Pages 245-246
Elements of Homotopy Theory….Pages 247-256
Applications of Topology to Physics….Pages 257-259
Back Matter….Pages 261-276
Reviews
There are no reviews yet.