C. Furetta9789812382405, 9812382402
Table of contents :
PREFACE……Page 8
ACKNOWLEDGMENTS……Page 10
CONTENTS……Page 12
Activation energy (definition and properties)……Page 20
Adirovitch model……Page 22
Aluminium oxide (Al2O3)……Page 27
Annealing (general considerations)……Page 28
1st procedure……Page 30
2nd procedure……Page 32
Anomalous fading……Page 38
Area measurement methods (generality)……Page 39
Area measurement method (Maxia et al.)……Page 40
Area measurement method (Muntoni et al.: general order)……Page 43
Area measurement method (Moharil: general order)……Page 44
Area measurement method (Moharil: general order, s = s(T))……Page 45
Area measurement method (Rasheedy: general order)……Page 50
Arrhenius equation……Page 54
Assessment of random uncertainties in precision of TL measurements (general)……Page 55
Atomic number (calculation)……Page 58
Basic equation of radiation dosimetry by thermoluminescence……Page 62
Braunlich-Scharmann model……Page 64
Calibration factor Fc (definition)……Page 74
1st procedure……Page 75
2nd procedure……Page 76
Competition……Page 77
Computerized glow curve deconvolution (CGCD): Kitis’ expressions……Page 79
First-order expression……Page 80
Second order expression……Page 82
General order……Page 84
Condition at the maximum (first order)……Page 88
Condition at the maximum (first order): remarks……Page 89
Condition at the maximum (general order)……Page 90
Condition at the maximum (second order)……Page 91
Condition at the maximum when s’=s'(T) (second-order kinetics)……Page 93
Condition at the maximum when s”=s”(T) (general-order kinetics)……Page 95
Condition at the maximum when s=s(T) (first-order kinetics)……Page 96
Considerations on the heating rate……Page 97
Considerations on the methods for determining E……Page 104
Considerations on the symmetry factor, and the order of kinetics, b……Page 110
Correction factor for the beam quality, Fen (general)……Page 114
Curve fitting method (Kirsh: general order)……Page 116
CVD diamond……Page 118
The intrinsic or native defects…….Page 120
Extrinsic or impurity defects, like chemical impurities Y in a crystal X…….Page 121
Ionizing radiation produces further defects in alkali halides…….Page 123
Determination of the dose by thermoluminescence……Page 124
Dihalides phosphors……Page 125
Dosimeter’s background or zero dose reading (procedure)……Page 126
Dosimetric trap……Page 127
Effect of temperature lag on trapping parameters……Page 128
Energy dependence (procedure)……Page 129
Environmental dose rate (calculation)……Page 131
Correction in the environmental measurement……Page 135
Error sources in TLD measurements……Page 136
Sources of error due to the dosimeter……Page 137
Errors generated in the reader……Page 139
Errors due to the annealing procedures……Page 140
Fading (theoretical aspects)……Page 142
Expressions related to different situations……Page 149
Fading factor……Page 156
Fading: useful expressions……Page 157
1. Initial and instantaneous irradiation followed by fading at room temperature……Page 159
2. Initial but not instantaneous irradiation, followed by fading at room temperature……Page 161
3. The irradiation is carried out over all the experimental period……Page 162
4. An initial and short irradiation is superposed to a background irradiation……Page 164
First-order kinetics when s=s(T)……Page 166
Fluorescence……Page 167
Frequency factor, s……Page 168
Frequency factor, s (errors in its determination)……Page 169
Frequency factor and pre-exponential factor expressions……Page 170
Garlick-Gibson model (second-order kinetics)……Page 176
First order peaks……Page 178
Second order peaks……Page 179
Glow curve……Page 182
Exit dose calibration factor……Page 184
Inflection points method (Land: first order)……Page 185
Inflection points method (Singh et al.: general order)……Page 187
Initial rise method when s =s(T) (Aramu et al.)……Page 190
Initialization procedure……Page 191
Integral approximation……Page 194
Isothermal decay method (Garlick-Gibson: first order)……Page 195
Isothermal decay method (general)……Page 196
Isothermal decay method (May-Partridge: (a) general order)……Page 197
Isothermal decay method (May-Partridge : (b) general order)……Page 198
Isothermal decay method (Moharil: general order)……Page 199
Isothermal decay method (Takeuchi et al.: general order)……Page 201
Keating method (first-order, s=s(T) )……Page 204
Kinetic parameters determination: observations……Page 207
Kinetics order: effects on the glow-curve shape……Page 213
Linearization factor, Flin (general requirements for linearity)……Page 216
Linearity (procedure)……Page 219
Linearity test (procedure)……Page 221
Lithium borate (Li2B4O7)……Page 223
LiF: Mg, Ti……Page 225
LiF: Mg, Cu,P……Page 227
Luminescence (general)……Page 228
Luminescence (thermal stimulation)……Page 229
Luminescence dosimetric techniques……Page 231
Luminescence efficiency……Page 232
Luminescence phenomena……Page 233
Magnesium borate (MgO x nB2O3)……Page 234
Magnesium orthosilicate (Mg2SiO4)……Page 235
May-Partridge model (general order kinetics)……Page 236
Mean and half-life of a trap……Page 238
Method based on the temperature at the maximum (Randall-Wilkins)……Page 242
Methods for checking the linearity……Page 243
UNI, IEC and IAEA methods…….Page 244
Regression analysis…….Page 245
Analysis of variance…….Page 246
Model of non-ideal heat transfer in TL measurements……Page 247
Multi-hit or multi-stage reaction models……Page 250
Nonlinearity……Page 252
Non-ideal heat transfer in TL measurements (generality)……Page 259
Numerical curve fitting method (Mohan-Chen: first order)……Page 260
Numerical curve fitting methods (Mohan-Chen: second order)……Page 262
Numerical curve fitting method (Shenker-Chen: general order)……Page 263
Oven (quality control)……Page 266
Partridge-May model (zero-order kinetics)……Page 274
Peak-shape method (Balarin: first- and second-order kinetics)……Page 275
Peak shape method (Chen: first- and second-order)……Page 279
Total half-width peak method……Page 280
High-temperature-side half peak……Page 284
Low-temperature side half peak……Page 287
Peak shape method (Chen: general-order kinetics)……Page 291
Peak shape method (Christodoulides: first- and general-order)……Page 295
Peak shape method (Gartia, Singh & Mazumdar: (b) general order)……Page 298
Peak shape method (Grossweiner: first order)……Page 299
Peak shape method (Halperin-Braner)……Page 301
Peak shape method (Lushchik: first and second order)……Page 311
Peak shape method (Mazumdar, Singh & Gartia: (a) general order)……Page 314
Peak shape method (parameters)……Page 318
Total half-width of a peak……Page 319
High-temperature side half peak……Page 323
Low-temperature side half peak……Page 325
Peak shape method: reliability expressions……Page 331
Grosswiener expressions given as a function of and w:……Page 337
Grosswiener’s modified expressions related to Chen’s expressions……Page 338
Error analysis……Page 339
Peak shift……Page 342
Perovskite’s family (ABX3)……Page 344
Phosphorescence……Page 345
Photon energy response (calculation)……Page 348
Photon energy response (definition)……Page 351
Phototransferred thermoluminescence (PTTL) (general)……Page 352
Phototransferred thermoluminescence (PTTL): model……Page 353
Precision and accuracy (general considerations)……Page 359
Random uncertainties……Page 361
Systematic uncertainties……Page 362
Precision concerning a group of TLDs of the same type submitted to one irradiation……Page 363
Precision concerning only one TLD undergoing repeated cycles of measurements (same dose)……Page 364
Precision concerning several identical dosimeters submitted to different doses……Page 365
Second procedure……Page 368
Properties of the maximum conditions……Page 376
Quasiequilibrium condition……Page 378
Randall-Wilkins model (first-order kinetics)……Page 380
Recombination processes……Page 383
Relative intrinsic sensitivity factor or individual correction factor Si (definition)……Page 384
Relative intrinsic sensitivity factor or individual correction factor Si (procedures)……Page 387
1st procedure……Page 388
2nd procedure……Page 389
3rd procedure……Page 391
Residual TL signal……Page 393
Rubidium halide……Page 394
Second-order kinetics when s’=s'(T)……Page 396
Self-dose in competition to fading (procedure)……Page 397
Sensitivity (definition)……Page 398
Set up of a thermoluminescent dosimetric system (general requirements)……Page 399
Theoretical model……Page 400
Sodium pyrophosphate (Na4P2O7)……Page 409
Spurious thermoluminescence: chemiluminescence……Page 410
Stability factor Fst (definition)……Page 411
Stability factor Fst (procedure)……Page 412
Stability of the reading system background……Page 414
Stability of the TL response……Page 415
Sulphate phosphors……Page 416
Temperature gradient in a TL sample……Page 420
Temperature lag: Kitis’ expressions for correction (procedure)……Page 422
First-order kinetics……Page 425
General-order kinetics……Page 428
Procedure for batch homogeneity…….Page 430
Test for the reproducibility of a TL system (procedure)……Page 434
Thermal cleaning (peak separation)……Page 436
Thermal fading (procedure)……Page 437
Thermal quenching……Page 439
Thermally disconnected traps……Page 440
Thermoluminescence (thermodynamic definition)……Page 441
Thermoluminescent dosimetric system (definition)……Page 443
Thermoluminescent materials: requirements……Page 444
Tissue equivalent phosphors……Page 445
Trap characteristics obtained by fading experiments……Page 446
Trap creation model……Page 448
Tunnelling……Page 449
Two-trap model (Sweet and Urquhart)……Page 450
Various heating rates method (Chen-Winer: first order)……Page 454
Various heating rates method (Chen-Winer: second and general orders)……Page 456
Various heating rates method (Gartia et al.: general order)……Page 458
Various heating rate method (Sweet-Urquhart: two-trap model)……Page 459
First order kinetics……Page 460
Zirconium Oxide (ZrO2)……Page 464
AUTHOR INDEX……Page 466
SUBJECT INDEX……Page 476
Reviews
There are no reviews yet.