Kullaiah Byrappa, Tadashi Ohachi3540003673, 9783540003670, 0815514530, 9780815514534
Table of contents :
Front Cover……Page 2
Front Matter……Page 3
Foreword……Page 6
Preface……Page 9
Table of Contents……Page 0
Back Cover……Page 11
Table of Contents……Page 12
1.1 Introduction……Page 21
1.2 Morphology of Crystals……Page 23
1.3 Diamond……Page 27
1.4 Beryl……Page 33
1.5 Trapiche Ruby……Page 38
References……Page 42
2.1.1 Driving Force……Page 44
2.1.2 Rate-Determining Process……Page 46
2.2 Vapor Growth……Page 47
2.2.1 Step Velocity……Page 50
2.2.2 Mechanism of Two-Dimensional Nucleation Growth……Page 54
2.2.3 Mechanism of Spiral Growth……Page 58
2.3.1 Solvation Effects and Growth Rates……Page 61
2.3.2 Handling of Polyhedral Finite Crystals……Page 68
References……Page 73
3.1 Introduction……Page 74
3.2.1 MBE System……Page 75
3.2.2 RHEED Intensity Oscillation……Page 76
3.2.3 Surface Diffusion and Stepped Surface……Page 78
3.2.4 2D-Nucleation and Step Flow Modes……Page 80
3.2.5 Critical Temperature and Growth Conditions……Page 83
3.2.6 Incorporation Diffusion Length……Page 85
3.2.7 Intersurface Diffusion……Page 87
3.2.8 Elementary Growth Processes……Page 89
3.3.1 Growth of High-Purity Materials by MOCVD……Page 90
3.3.2 In Situ Monitoring and Study of Growth Kinetics in MOCVD……Page 94
3.3.3 Nanostructure Fabrication by MOCVD……Page 99
3.3.4 Highly-Mismatched Heteroepitaxy and Microchannel Epitaxy with MOCVD……Page 103
3.4 Summary……Page 108
References……Page 109
4.1 Introduction……Page 112
4.2.1 Preparation Methods……Page 113
4.2.2 Applications of Diamond Film……Page 117
4.3.1 Homoepitaxy of Diamond Film……Page 121
4.3.2 Heteroepitaxy of Diamond Film……Page 122
4.4 Phase Diagram and Gas-Phase Species in CVD Diamond Growth Processes……Page 130
4.4.1 Phase Diagram……Page 131
4.4.2 Gas Phase Species……Page 132
4.5 In Situ Diagnostic Techniques for Diamond Growth……Page 135
4.5.1 Molecular Beam Mass Spectroscopy……Page 136
4.5.2 Laser-Induced Fluorescence……Page 139
4.5.3 Optical Emission Spectroscopy……Page 142
4.6 Summary……Page 150
References……Page 151
5.1.1 Laser-Assisted Growth of Thin Films……Page 161
5.1.2 Ferroelectric PZT Thin Films……Page 162
5.2.1 Principles of Pulsed-Laser-Deposition Technique……Page 163
5.2.2 Growth and Structure of Thin Films……Page 165
5.3 Case Study: Nd-Modified PZT Films……Page 167
5.4 Results from XRD and EDS Measurements……Page 169
5.5 Compositional and Structural Changes in the Target……Page 172
5.6.1 Basic Concepts of the Raman Effect……Page 176
5.6.3 Raman Spectra of Ceramics……Page 178
5.6.4 Raman Active Phonons of PZT Ceramics……Page 179
5.6.5 Characteristic Features of the Raman Scattering from the Structural Point of View……Page 180
5.6.6 Raman Spectra of PZT Thin Films……Page 181
5.7.1 Permittivity and Spontaneous Polarization……Page 184
5.7.2 Electronic Conduction……Page 186
5.7.3 Role of Macroscopic Residual Stresses……Page 189
5.8 Summary……Page 192
References……Page 194
6.1 Introduction……Page 198
6.1.1 Applications of SiC……Page 200
6.1.2 Historical Development of SiC Crystal Growth……Page 202
6.2.1 Acheson Method……Page 203
6.2.2 Lely Method……Page 204
6.2.3 Modified Lely Method……Page 206
6.2.4 Sublimation Sandwich Method……Page 207
6.2.5 Chemical Vapor Deposition……Page 208
6.3.2 Liquid Phase Epitaxy……Page 210
6.4 Bulk Growth by Seeded Sublimation: The Industrial Process……Page 211
6.4.1 Growth System……Page 212
6.4.2 Seeding and Growth Process……Page 214
6.5.2 Doping in Epitaxial Films……Page 217
6.6.1 Growth Spirals and Micropipes……Page 218
6.6.2 Polytypism……Page 219
6.6.3 Graphitization……Page 220
6.7.1 Micropipes and Closed Core Screw Dislocations……Page 221
6.7.3 Small Angle Boundaries……Page 238
6.7.4 Hexagonal Voids……Page 239
6.8 Summary……Page 240
References……Page 242
7. Silicon Carbide Crystals — Part II: Process Physics and Modeling……Page 250
7.1 Introduction……Page 252
7.2.1 Growth Process……Page 253
7.2.2 Flow and Heat Transfer Parameters……Page 254
7.2.3 One-Dimensional Network Model……Page 257
7.2.4 Thermal Transport Model……Page 258
7.2.5 Mass Transport Model……Page 261
7.2.6 Numerical Method……Page 266
7.3.1 Electromagnetic Field and Heat Generation……Page 268
7.3.2 Temperature Field……Page 270
7.3.3 Growth Rate Calculations……Page 274
7.3.4 Thermally Induced Stress……Page 280
7.4 Summary……Page 282
References……Page 283
8.1 Introduction……Page 287
8.2 Thermodynamic Model……Page 288
8.2.1 Computational Method……Page 290
8.2.2 Standard-State Properties……Page 292
8.2.3 Stability and Yield Diagrams……Page 293
8.2.4 Stability and Yield Diagrams for the Stoichiometric Ratio of Precursors (A/B = 1)……Page 295
8.2.5 Stability and Yield Diagrams for the Nonstoichiometric Ratio of Precursors (A/B > 1)……Page 302
8.2.6 Carbon Dioxide Contamination……Page 305
8.3 Validation and Applications of Thermodynamic Modeling……Page 308
References……Page 310
9.2.1 Description……Page 314
9.2.2 Perovskite Ferroelectrics……Page 315
9.2.3 History……Page 316
9.3.1 Thermodynamic Conditions……Page 320
9.3.2 Mineralizers and Additives……Page 324
9.3.3 Homogeneity……Page 325
9.3.5 Hydroxyl Groups……Page 326
9.4.1 Rate Determining Step in the Mechanisms……Page 327
9.4.3 Reaction Rate……Page 329
9.4.4 Variables Affecting the Reaction Rate……Page 333
9.5.1 Precursor……Page 334
9.5.2 Temperature……Page 336
9.5.5 Mineralizer Type and Concentration……Page 337
9.6.1 Precursor……Page 339
9.6.3 Mineralizer Type and Concentration……Page 340
9.6.6 Summary……Page 341
References……Page 342
10.1 Introduction……Page 349
10.3 Phase Equilibria……Page 350
10.4 Structure of Nd:RVO4……Page 352
10.5.1 Zone Melting……Page 353
10.5.2 Czochralski Technique……Page 354
10.5.3 Flux Growth……Page 355
10.5.4 Top Seeded Solution Growth (TSSG)……Page 356
10.6 Solubility Study……Page 357
10.7 Crystal Growth……Page 361
10.8 Morphology……Page 365
10.8.1 Surface Morphology……Page 369
10.9.2 Laser Spectroscopy……Page 372
10.9.3 Absorption Measurements……Page 375
10.10 Summary……Page 376
References……Page 377
11.1 Introduction……Page 379
11.1.1 Growth of Quartz With Small Content of Al3+……Page 381
11.1.3 Growth of Quartz Crystals Above Transition Temperature and Morphology of Synthetic Crystals……Page 382
11.1.4 Raman Spectral Studies of SiO2-NaOH-H2O and SiO2-Na2CO3-H2O System Solutions Under Hydrothermal Conditions……Page 383
11.2.1 Experimental Method……Page 384
11.2.2 Experimental Results……Page 385
11.3.1 Experimental Method……Page 386
11.3.2 Experimental Results……Page 387
11.4.1 Experimental Method……Page 388
11.4.2 Experimental Results……Page 390
11.5.1 Experimental Method……Page 393
11.5.2 Experimental Results……Page 395
11.5.3 Discussion……Page 397
References……Page 398
12.1 Introduction……Page 400
12.2 Crystallographic Structure……Page 401
12.3 Growth of Lithium Niobate Crystals: Earlier Work……Page 402
12.4 Growth of Bismuth Germanate Crystals: Earlier Work……Page 403
12.5 A Crystal Growth System for Cz Growth of Nearly Perfect Crystals……Page 405
12.5.1 A Crystal Growth System for Low Thermal Gradient Czochralski (LTG Cz) Technique……Page 406
12.6.1 Double Crystal X-Ray Diffractometer……Page 408
12.6.2 Five Crystal X-Ray Diffractometer……Page 410
12.7 Synthesis of Lithium Niobate and Bismuth Germanate Powders……Page 411
12.8.1 LiNbO3 Single Crystals……Page 413
12.8.2 Bismuth Germanate Single Crystals……Page 415
12.9 Evaluation of Perfection of Lithium Niobate and Bismuth Germanate Single Crystals by High Resolution X-Ray Diffractometry and Topography……Page 417
12.9.1 Characterization of Lithium Niobate Crystals……Page 418
12.9.2 Characterization of Bismuth Germanate Single Crystals……Page 420
12.10 Summary……Page 425
References……Page 426
13.1.1 Coherent Solid-State Light Source in the Visible and UV Regions by Nonlinear Optical Crystals……Page 431
13.1.2 NLO Borate Crystals……Page 432
13.2.1 The Search for CsLiB6O10 (CLBO)……Page 434
13.2.2 Growth of CLBO……Page 437
13.2.3 Structural and Optical Properties of CLBO……Page 438
13.2.4 Degradation of CLBO Crystallinity and Solution……Page 439
13.2.5 Performance of CLBO for Generation of Deep-UV Light……Page 444
13.2.6 Relation Between Crystal Quality and Resistance to Bulk Laser-Induced Damage……Page 445
13.3.1 The Search for Gdx Y1-X Ca4O(BO3)3 (GdYCBO)……Page 446
13.3.2 Noncritically Phase-Matched THG for Nd:YAG Lasers by GdYCBO……Page 448
13.3.3 Noncritically Phase-Matched SHG for Nd:YAG Lasers by GdYCBO……Page 450
13.3.4 Noncritically Phase-Matched SHG for Ti:Sapphire Lasers by GdYCBO……Page 451
13.3.5 Optical Damage of GdYCOB and Its Solution……Page 452
13.4.1 The Search for K2Al2B2O7 (KAB)……Page 455
13.4.2 Growth of KAB……Page 457
13.5 Summary and Perspective……Page 459
References……Page 460
14.2 Growth of the High Tc Phase of BSCCO……Page 465
14.2.1 Synthesis of the High Tc Phase by Sintering the Powder of Bi-Sr-Ca-Cu……Page 466
14.2.2 Preparation of Single Crystals Containing the High Tc Phase of a Bi-Sr-Ca-Cu-O Superconductor……Page 470
14.2.3 Conversion of Superconducting Bi-System Single Crystals from 2212 to 2223 by the Annealing Method……Page 474
14.3 Liquid Phase Epitaxial Growth of Low Tc Phase of BSCCO……Page 479
14.3.1 SrTiO3 (100) Substrate……Page 481
14.3.2 LaAlO3 (100) Substrate……Page 483
14.3.3 NdGaO3 (001) Substrate……Page 484
14.4 Construction of Phase Diagrams by in Situ Observation and Their Application to Crystal Growth of Oxide Superconductors……Page 486
14.4.1 Apparatus……Page 487
14.4.2 Phase Diagram of SmBa2Cu3O7-delta and Its Application……Page 490
14.4.3 Phase Diagram of Bi-Based Oxide Superconductors……Page 495
14.4.4 Primary Crystallization Field of Bi-Based Oxide Superconductors and Its Application……Page 503
References……Page 505
15.1 Introduction……Page 508
15.2.1 ZnTe……Page 509
15.2.2 ZnSe……Page 513
15.2.3 ZnS……Page 520
15.2.4 ZnO……Page 521
15.3 Properties and Defects of the Crystals……Page 523
15.5 Applications and Perspectives……Page 524
References……Page 525
16.1 Introduction……Page 535
16.2 Calcium Orthophosphates……Page 536
16.3.1 Calcification of Biomaterials Used in Contact with Bone……Page 538
16.3.2 Calcification of Biomaterials Used in Contact with Blood……Page 539
16.4 Apatite Deposition on Biomaterials as Surface Modification……Page 542
16.5 Calcium Phosphate Cements……Page 546
16.6 Hydroxyapatite Ceramics……Page 547
16.7 Hydrothermal Growth of Hydroxyapatite……Page 548
16.8 Factors Influencing Apatite Formation in Hard Tissues……Page 550
16.9 Ectopic Calcifications……Page 552
16.10 Kinetics of Hydroxyapatite Crystal Growth in Solution……Page 554
References……Page 558
17.1 Introduction……Page 570
17.2 Growth Methods of Gemstones……Page 572
17.2.1 Verneuil Method……Page 573
17.2.2 Czochralski Method……Page 575
17.2.4 Flux Method……Page 576
17.3.1 Growth of Emerald Crystals……Page 578
17.3.2 A Simple Method of Growing Emerald Crystals……Page 579
17.4 Summary……Page 587
References……Page 588
A……Page 590
C……Page 591
D……Page 593
F……Page 594
G……Page 595
H……Page 596
K……Page 597
M……Page 598
N……Page 599
O……Page 600
P……Page 601
R……Page 602
S……Page 603
T……Page 605
V……Page 606
Z……Page 607
Reviews
There are no reviews yet.