Film processing

Free Download

Authors:

Series: Progress in polymer processing

ISBN: 1569902526, 9781569902523, 3446178821, 9783446178823

Size: 18 MB (19105596 bytes)

Pages: 474/474

File format:

Language:

Publishing Year:

Toshitaka Kanai, Gregory A. Campbell1569902526, 9781569902523, 3446178821, 9783446178823

Discusses developments in processing hardware and operating techniques permitting increasingly high production rates, optimum property development, unusual degrees of molecular orientation and the coextrusion of multi-layer, multi-component film and sheet. DLC: Plastic films.

Table of contents :
Front Matter……Page 1
Foreword……Page 5
Contributors……Page 7
Preface……Page 8
Table of Contents……Page 0
Front Matter……Page 10
Foreword……Page 14
Contributors……Page 16
Preface……Page 17
1. Film Processing: Overview and Introductory Rheology……Page 30
1.2 Cast Film……Page 31
1.4 Tentering……Page 32
1.5 Double Bubble Process……Page 33
1.6 Volume Contents……Page 35
1.7.1 Shear Rheology……Page 36
1.7.2 Elongational Rheology……Page 37
1.7.3 Literature Review……Page 38
1.7.4 Uniaxial and Biaxial Flow……Page 39
2.1 Flat Die Analysis……Page 43
2.1.2.1 Circular Tube Die……Page 44
2.1.2.2 Parallel Plate Die……Page 45
2.1.3.1 Analytical and Numerical Approaches……Page 47
2.1.3.2 Mathematical Formulation……Page 49
2.1.3.4 Practical Simple Coat Hanger Die Design from Analytical Equations……Page 54
2.1.4 Two-Dimensional Numerical Analysis of the Flat Die……Page 59
2.1.5.2 Multimanifold Die……Page 65
2.2 Spiral Die Analysis……Page 68
2.2.2 Annular Flow Geometry……Page 69
2.2.3 Basic Design Considerations……Page 74
2.2.4 Mathematical Modeling……Page 76
2.3 Die Control System of Film Thickness Distribution……Page 87
2.3.2.3 Effects of Film Thickness……Page 88
2.3.2.4 Adjustment of the Flexlip……Page 89
2.3.2.7 Multilayer Film……Page 91
2.3.3.3 Effect on Film Thickness……Page 93
2.3.4 Outlook……Page 99
3.1 Dynamics, Heat Transfer, and Structure Development in Tubular Film Extrusion of Polymer Melt……Page 102
3.1.2.1 Shear Flow……Page 103
3.1.2.2 Elongational Flow……Page 104
3.1.3 Local Kinematics……Page 106
3.1.4 Temperature Profiles……Page 108
3.1.5 Heat Transfer……Page 109
3.1.6 Crystallization Rate……Page 114
3.1.7 Theoretical Analysis……Page 115
3.1.8 Dimensionless Analysis……Page 122
3.1.9 Predictions of the Model……Page 124
3.1.10 Physical Properties of High Molecular Weight HDPE Tubular Film……Page 126
3.1.11 Scaleup of High Molecular Weight HDPE……Page 129
3.1.12 Processability……Page 138
3.2 Kinematics, Dynamics, and Physical Properties of Blown Film……Page 142
3.2.1 Introduction……Page 143
3.2.2.1 Kinematics……Page 144
3.2.2.1 Viscous Models……Page 146
3.2.2.2 Viscoelastic Models……Page 147
3.2.2.3 Maxwell Model above the Freeze Line……Page 148
3.2.2.4 Other Literature Models……Page 149
3.2.2.5 Aerodynamics……Page 150
3.2.3.2 Visco-Plastic-Elastic Model……Page 151
3.2.3.3 Two-Phase Liquid Models……Page 152
3.2.3.4 Two-Phase Crystalline Model……Page 153
3.2.3.5 Constitutive Relationships……Page 154
3.2.3.6 Energy Balance Equation……Page 155
3.2.3.8 Liquid Phase Thickness Reduction……Page 156
3.2.3.10 Numerical Scheme……Page 157
3.2.4.2 Theoretical……Page 159
3.2.4.3 Experimental……Page 160
3.2.4.4 Results……Page 162
3.2.5 Summary……Page 167
3.3 Bubble Instability: Experimental Evaluation……Page 170
3.3.1 Introduction……Page 171
3.3.3 Qualitative Experimental Analysis……Page 173
3.3.4.1 Equipment……Page 174
3.3.4.2 Bubble Stability Diameter Analysis……Page 177
3.3.4.3 ANOVA of Material and Process Sensitivity……Page 179
3.3.4.4 Graphical Analysis……Page 181
3.3.4.5 Fourier Transform Analysis……Page 183
3.3.5 Summary……Page 184
3.4 Optical Properties and Structural Characteristics of Tubular Film……Page 185
3.4.2.1 Structural Characteristics……Page 186
3.4.2.2 Electromagnetic Theory and Optical Characteristics……Page 187
3.4.2.3 Theory of Dielectrics……Page 190
3.4.2.4 Orientation……Page 191
3.4.2.5 Interaction of Electromagnetic Waves with Surfaces……Page 193
3.4.3.1 Measurement of Crystallinity……Page 195
3.4.3.2 Measurement of Orientation in Films……Page 197
3.4.3.3 Measurement of Haze……Page 198
3.4.4 Orientation Development in Vitrifying Tubular Film……Page 199
3.4.5 Structure Development in Crystalline Tubular Film……Page 200
3.4.6 Mechanism of Haze……Page 203
4.1 Theoretical Analysis of Film Deformation Behavior in Casting……Page 209
4.1.2.1 Vertical Casting Model……Page 210
4.1.2.2 Catenary Casting Model……Page 213
4.1.3 Analysis of Film Temperature……Page 220
4.1.3.1 A Model for Cooling in Extruded Materials by Michaeli and Menges……Page 221
4.1.3.2 A Model for the Cooling of Cast Film on a Chill Roll by Billon et al……Page 224
4.1.4.1 Neck-In Phenomenon……Page 226
4.1.4.2 Edge Bead Phenomenon……Page 227
4.1.5 Influence of Processing Factors on Film Properties……Page 234
4.1.6 Concluding Remarks……Page 237
4.2 Analysis of Draw Resonance Instability in the Film Casting Process……Page 239
4.2.1 Introduction……Page 240
4.2.3 Draw Resonance in Newtonian Fluids……Page 241
4.2.4.1 Power Law Fluids……Page 245
4.2.4.2 Viscoelastic Fluids……Page 247
4.2.5 Mechanism of Draw Resonance……Page 251
4.2.6 Conclusion……Page 253
5. Multilayer Films……Page 254
5.3 Monolayer Blown Film Extrusion……Page 255
5.4 Coextrusion of Cast Film/Sheet……Page 257
5.5 Coextrusion Feedblock and Multimanifold Dies……Page 258
5.6 Coextrusion of Flexible Cast Film……Page 263
5.7 Coextrusion of Blown Film……Page 265
5.8.1 Extruder Screws for Coextrusion……Page 267
5.8.2 Mixers for Coextrusion……Page 268
5.8.3 Gear Pumps for Coextrusion……Page 269
5.8.5 Coextrusion Process Control……Page 270
5.10 Concluding Thought……Page 271
6.1 Biaxially Oriented Film……Page 273
6.1.2 Outline of the Tentering System Machine……Page 274
6.1.4 The Extrusion Process……Page 278
6.1.4.1 Performance Improvement on the Single-Screw Extruder……Page 280
6.1.4.2 Capacity Increase by the Tandem Extruder……Page 281
6.1.5 Filter and Die……Page 285
6.1.6 The Casting Process……Page 287
6.1.7 Stretching and Annealing Processes……Page 294
6.1.8 Takeoff and Winding Processes……Page 302
6.1.9.1 Functions……Page 303
6.1.9.2 Features……Page 304
6.1.9.4 Automatic Film Thickness Profile Control System……Page 305
6.1.10 Closing Comments……Page 308
6.2 Influence of Processing Conditions on Structure and Physical Properties of Biaxially Stretched Engineering Thermoplastics……Page 310
6.2.2 Solid State Phase Behavior of PET……Page 311
6.2.3 PET Film Technology……Page 313
6.2.5 Development of Structure with Deformation……Page 314
6.2.5.3 Deformation Behavior of PET in the Rubbery Region and Its Relationship to Thickness Uniformity……Page 315
6.2.5.4 Structure and Morphology Developed by Biaxial Stretching of PET……Page 317
6.2.5.5 Annealing Effects on PET……Page 325
6.2.5.6 Crystallinity and Thermal Properties……Page 327
6.2.5.7 Conformational Changes Due to Drawing and Annealing……Page 328
6.2.5.8 Small-Angle X-Ray Studies (SAXS) on Stretched and Annealed PET……Page 331
6.2.6.1 Dynamic Mechanical Properties……Page 332
6.2.6.2 Static Mechanical Properties……Page 336
6.2.6.3 Uniaxial (Constant Width) Stretched Films……Page 337
6.2.6.5 Two-Step Biaxially Stretched Films……Page 339
6.2.6.6 Long-Term Creep Behavior……Page 341
6.2.7.1 Gas Permeability Characteristics and Morphology……Page 342
6.3 Stretching Conditions, Orientation, and Physical Properties of Biaxially Oriented Film……Page 349
6.3.1 Introduction……Page 350
6.3.2 Outline of the Film Making Process……Page 351
6.3.3.2 Longitudinal Stretching……Page 353
6.3.3.4 Heat Setting……Page 356
6.3.4.1 Mechanical Properties……Page 357
6.3.4.2 Thermal Properties……Page 359
6.3.4.3 Optical Properties……Page 361
6.3.4.5 Chemical Resistance……Page 363
6.3.4.6 Electrical Properties……Page 364
6.3.5.1 Bowing……Page 368
6.3.5.2 Thermal Stability……Page 371
6.3.5.3 Gauge Uniformity……Page 372
6.3.5.4 Tensilized Film……Page 373
6.3.5.5 To Make the Film Thinner……Page 377
6.4 Theoretical Analysis of the Tentering Process……Page 382
6.4.2.1 Derivation of Governing Equations……Page 383
6.4.2.2 Numerical Analysis of Rubber Film Extension……Page 390
6.4.3.1 Analytical Method for Two-Dimensional Plane Stress or Strain Problem……Page 395
6.4.3.2 Observation of Deformation Behavior in a Tenter……Page 400
6.4.3.3 Simulation of the Bowing Phenomenon in the Tenter Process……Page 402
6.4.3.4 FEM Simulation of Tensile Testing……Page 407
7.1 Double Bubble Tubular Film Process System and Theoretical Analysis of Stress Development and Scaleup Rule……Page 415
7.1.2 Technical Trends and Typical Applications……Page 416
7.1.3.1 Outline of the Double Bubble Tubular Film Process……Page 417
7.1.3.2 Relationship between Process Conditions and Film Stretching Stress……Page 418
7.1.3.3 Scaleup Rule for the Double Bubble Tubular Film Process……Page 419
7.1.4 Results and Discussion……Page 420
7.1.4.1 Conclusion……Page 426
7.1.5 On Adaptability to Noncrystalline Resin (PS)……Page 429
7.1.6 The Film Stretching Process and Its Physical Properties (Simultaneous versus Multistage)……Page 431
7.1.7 The Heat Set Technique (Production of Shrink Film)……Page 433
7.1.8 Development of Peripheral Technology for the Double Bubble Tubular Biaxial Stretching Process……Page 434
7.2 Biaxially Oriented Double Bubble Tubular Film: Process and Film Character……Page 441
7.2.2.1 Polyvinylidene Chloride……Page 442
7.2.2.2 Polyethylene Terephthalate……Page 443
7.2.2.3 Poly p-Phenylene Sulfide……Page 448
7.2.2.4 Polypropylene……Page 454
7.2.2.7 Polyvinylidene Fluoride……Page 455
7.2.3 Final Comments……Page 456
B……Page 459
C……Page 460
D……Page 461
E……Page 462
F……Page 463
H……Page 464
L……Page 465
M……Page 466
O……Page 467
P……Page 468
R……Page 469
S……Page 470
T……Page 472
V……Page 473
Y……Page 474

Reviews

There are no reviews yet.

Be the first to review “Film processing”
Shopping Cart
Scroll to Top