Charles L. Mader9781420052381, 1420052381
Numerical Modeling of Explosives and Propellants, Third Edition provides a complete overview of this rapidly emerging field, covering basic reactive fluid dynamics as well as the latest and most complex methods and findings. It also describes and evaluates Russian contributions to the experimental explosive physics database, which only recently have become available.
This book comes packaged with a CD-ROM that contains—
· FORTRAN and executable computer codes that operate under Microsoft® Windows Vista operating system and the OS X operating system for Apple computers
· Windows Vista and MAC compatible movies and PowerPoint presentations for each chapter
· Explosive and shock wave databases generated at the Los Alamos National Laboratory and the Russian Federal Nuclear Centers
Charles Mader’s three-pronged approach – through text, computer programs, and animations – imparts a thorough understanding of new computational methods and experimental measuring techniques, while also providing the tools to put these methods to effective use.
Table of contents :
http___www.engnetbase.com__books_6172_52381fm.pdf#xml=http___www.engnetbase.com_ejournals_search_searchquery.pdf……Page 1
NUMERICAL MODELING of EXPLOSIVES and PROPELLANTS, Third Edition……Page 2
Numerical Modeling of Explosives and Propellants……Page 4
Introduction……Page 5
The Author……Page 6
Contents……Page 7
appendix G: General Derivation of Flow Equations……Page 0
1.1 Steady-State Detonations……Page 9
1.2 Resolved Reaction Zone Detonations in One Dimension……Page 12
Nitromethane Reaction Zones……Page 14
Liquid TNT Reaction Zones……Page 22
Ideal Gas Reaction Zones……Page 24
1.3 Two-Dimensional Reaction Zones of Homogeneous Explosives……Page 26
1.4 Discussion of Reaction Zones of Homogeneous Explosives……Page 29
Experimental Observations……Page 30
Three-Dimensional Numerical Modeling……Page 31
Discussion……Page 36
References……Page 37
2.1 Steady-State Detonations……Page 39
2.2 Nonideal Detonations……Page 72
Ammonium Salt-Explosive Mixtures……Page 74
Ammonium Nitrate-Fuel Oil Mixtures……Page 79
Metal Loaded Explosives……Page 83
Models Assuming Propagating Detonation Between Particles……Page 85
5% Tungsten/95% HMX……Page 87
35% Tungsten/65% HMX……Page 88
Application to X0233……Page 89
Application to RDX/Exon/Pb……Page 92
Metal Loaded Explosive Summary……Page 93
The Third Type (X0233)……Page 97
2.3 Nonsteady-State Detonations……Page 98
Build-Up in Plane Geometry……Page 101
Build-Up in Diverging Geometry……Page 110
Build-Up in Converging Geometry……Page 113
Chemistry of Build-Up……Page 116
2.4 Nitrogen Oxide……Page 122
2.5 Carbon Condensation……Page 126
2.6 CNO Explosives……Page 132
2.7 Density……Page 133
2.8 Propellant Performance……Page 134
Effective C-J Pressures……Page 138
Electrical Conductivity Studies……Page 141
Carbon Cluster Size and Heat of Detonation……Page 143
Synchrotron Radiation Experiments……Page 144
2.10 Craig Decay Zones……Page 146
Conclusions……Page 147
References……Page 148
chapter three: Initiation of Detonation……Page 153
3.1 Thermal Initiation……Page 154
3.2 Shock Initiation of Homogeneous Explosives……Page 163
Hot Spot Initiation of Homogeneous Explosives……Page 169
Plexiglas Corner……Page 174
Hot Spot Initiation……Page 176
Hydrodynamic Hot Spot Model……Page 180
Shock Sensitivity and Composition……Page 182
Particle Size and Temperature Effects on Shock Sensitivity……Page 186
Single Hole Study……Page 190
Multiple Hole Study……Page 191
Desensitization of Explosives by Preshocking……Page 196
Conclusions……Page 201
References……Page 204
chapter four: Modeling Initiation of Heterogeneous Explosives……Page 207
4.1 The Forest Fire Model……Page 208
4.2 Heterogeneous Detonations……Page 217
Corner Turning……Page 222
Failure Diameter……Page 225
4.3 Desensitization by Preshocking……Page 231
4.4 Projectile Initiation of Explosives……Page 238
4.5 Burning to Detonation……Page 245
References……Page 252
chapter five: Interpretation of Experiments……Page 254
5.1 Plane Wave Experiments……Page 255
5.2 Explosions in Water……Page 258
5.3 The Plate Dent Experiment……Page 268
5.4 The Cylinder Test……Page 272
5.5 Jet Penetration of Inerts and Explosives……Page 275
5.6 Plane Wave Lens……Page 285
5.7 Regular and Mach Reflection of Detonation Waves……Page 288
5.8 Insensitive High Explosive Initiators……Page 296
References……Page 310
6.1 Fifty Year History……Page 313
6.2 The NOBEL CODE……Page 314
6.3 Proton Radiograph (PRad)……Page 317
Introduction……Page 320
Colliding Diverging PBX-9502 Detonations……Page 321
Modeling……Page 322
Conclusions……Page 328
Projectile and Exploding Bridge Wire Generated Cavities……Page 329
Compressible Navier-Stokes Modeling……Page 330
Explosive Generated Cavities……Page 337
Explosive Generated Water Wave……Page 341
Conclusions……Page 342
PHERMEX Experiments……Page 343
Forest Fire……Page 352
Build-Up TO Detonation……Page 353
NOBEL Cylinder Test Modeling……Page 358
Desensitization by Preshocking……Page 360
Corner Turning……Page 361
NOBEL Detonator Modeling……Page 363
Failure Cones……Page 364
Detonations Around Arcs……Page 368
6.8 Shaped Charge Jet Formation and Penetration……Page 370
6.9 Hydrovolcanic Explosions……Page 372
6.10 Summary……Page 375
References……Page 376
appendix A: Numerical Solution of One-Dimensional Reactive Flow……Page 378
A.1 The Flow Equations……Page 379
2. Radius……Page 381
1. PIC Viscosity……Page 382
B. C-J Volume Burn……Page 383
C. Gamma Law Taylor Wave Burn……Page 384
D. The Sharp Shock Burn……Page 385
B. The Equation of State and Yield Calculation……Page 386
C. A Steady-State Reaction Zone Piston on Left Boundary……Page 388
A.7 The HOM Equation of State……Page 389
A.8 HOM for Condensed Components……Page 390
A.9 HOM for Gas Components……Page 391
Mixture of Condensed and Gaseous Components……Page 392
A.10 Build-Up of Detonation Equation of State……Page 393
A.11 Discussion of Difference Scheme……Page 394
References……Page 395
appendix B: Numerical Solution of Two-Dimensional Lagrangian Reactive Flow……Page 396
A. Volumes……Page 400
B. Viscosity……Page 401
D. Energy……Page 402
E. Equation of State……Page 403
G. Acceleratons……Page 404
I. Cell Velocities……Page 406
References……Page 407
appendix C: Numerical Solution of Two-Dimensional Eulerian Reactive Flow……Page 408
C.1 The Numerical Technique……Page 412
A. The Equation of State……Page 413
D. Stress Deviators……Page 414
E. Artificial Viscosity……Page 419
G. Velocity……Page 420
H. Elastic Plastic or Real Viscosity……Page 421
K. Internal Energy Calculations……Page 422
L. Elastic-Plastic……Page 423
1. Mass Movement Across Side 2……Page 424
2. Mass Movement Across Side 1……Page 426
3. Mass Movement Across Side 3……Page 428
4. Mass Movement Across Side 4……Page 429
O. Repartition……Page 430
Q. Elastic-Plastic Flow……Page 431
R. Form Derivatives……Page 432
C.3 Equations of State……Page 433
A. HOM……Page 434
2. Gas Components……Page 435
3. Mixture of Condensed and Gaseous Components……Page 436
The Method……Page 437
The Method……Page 438
The Method……Page 439
E. HOM2SG……Page 440
C.4 Comparison of SIN and 2DE……Page 442
References……Page 444
appendix D: Numerical Solution of Three-Dimensional Eulerian Reactive Flow……Page 445
D.2 The Numerical Technique……Page 447
PHASE I……Page 448
B. Calculate the viscosities on the six faces of each cell……Page 449
D. Calculate tentative cell internal energies……Page 450
A. Calculate … for donor cells……Page 452
C. Calculate mass movement across face 4……Page 453
E. Boundaries for B, C, and D are treated as follows……Page 454
G. Mixed cells……Page 455
E.1 Introduction……Page 456
E.2 Covolumes……Page 458
E.3 Solid Products……Page 467
E.4 Thermodynamic Theory……Page 468
Gaseous Components……Page 469
Gaseous Components……Page 470
C. Free Energy……Page 471
Gaseous Components……Page 472
E.5 Solution of the BKW Equations……Page 473
Shock Hugoniot Temperature Calculation……Page 477
E.7 Linear Feedback Technique……Page 483
E.8 Explosive Mixtures……Page 484
References……Page 485
appendix F: Equations for Computing Thermodynamic Functions of Gases and Solids……Page 487
F.1 Monatomic Gas……Page 488
F.2 Diatomic Gas……Page 489
F.3 Polyatomic Gas……Page 490
F.4 Moment of Inertia……Page 491
F.5 One-Debye Theta Solid……Page 492
F.6 Two-Debye Theta Solid……Page 493
References……Page 494
G.2 Eulerian Conservation of Momentum……Page 495
G.3 Eulerian Conservation of Energy……Page 496
G.4 Stress and Viscosity Deviators……Page 497
G.6 Conversion to Radial Geometry……Page 498
GENERAL INFORMATION……Page 502
ANIMATIONS……Page 503
DATA FILES IN WINDOWS Directory……Page 505
RUSSIAN FEDERAL NUCLEAR CENTER DATA VOLUME……Page 506
SHORT COURSE POWERPOINTS……Page 507
Reviews
There are no reviews yet.