Table of contents :
College of Computing……Page 1
II. P REVIOUS W ORK……Page 2
A. Previous Work in Efficient Representation of Sparse Sets……Page 3
A. Bit Vector Linear Search……Page 4
B. Reducing Accesses by Aggregation……Page 5
C. Why Rearrangement of Rules can Help……Page 6
14 return BestRule;……Page 7
Proof: Consider a case in which we are intersecting two 64-bit v……Page 8
A. ABV Preprocessing……Page 9
C. Performance Evaluation on Industrial Firewall Databases……Page 10
Injecting Subprefixes: A second feature which directly affects t……Page 11
E. Performance Evaluation Using Synthetic Five-Dimensional Datab……Page 12
VIII. C ONCLUSIONS……Page 13
J. Xu, M. Singhal, and J. Degroat, A novel cache architecture to……Page 14
I. I NTRODUCTION……Page 15
II. A SSUMPTIONS AND C OMPUTATIONAL M ODELS……Page 16
Remark: It is clear from (a) that the calculation of GPS virtual……Page 17
C. Remarks on the Decision Tree Model……Page 18
Proof: (adapted from [ 18 ] ) Consider a decision tree algorithm……Page 19
Proof: To reduce scheduling to ${L}$ -membership, we construct a……Page 20
Fig. 5. Algorithm I for ${L}$ -membership test…….Page 21
Proof: [Sketch] The proof of this theorem is very similar to tha……Page 22
IV. C OMPLEXITY D ELAY T RADEOFFS W HEN A LLOWING L INEAR T ESTS……Page 23
Proof: We prove by contradiction. Let $Gamma ={T_{j}: 1leq j……Page 24
B. Our Complexity Results……Page 25
Proof: This proof is similar to that of Lemma 4. In the followin……Page 26
VII. C ONCLUSIONS……Page 27
S. Keshav, On the efficient implementation of fair queueing, Int……Page 28
I. I NTRODUCTION……Page 29
II. D EPLOYMENT I SSUES……Page 30
A. Baseline Algorithm……Page 31
B. Fair Throttle Algorithm……Page 32
Theorem 1: Assume that the server $S$ is overloaded (i.e., the a……Page 33
Experiment 3: Effect of $delta $ on the convergence rate. Fig.€……Page 34
B. Packet Network Results……Page 35
Fig.€8. (a) Protection for good users under 20% evenly distribut……Page 36
Fig.€10. (a) Protection for good users, under four different att……Page 37
VII. S YSTEM I MPLEMENTATION……Page 38
VIII. R ELATED W ORK……Page 39
Fig.€16. Throughput performance of router throttling, as a funct……Page 40
D. K. Y. Yau and X. Chen, Resource management in software-progra……Page 41
I. I NTRODUCTION……Page 43
B. Equilibrium Objectives and Utility-Based Interpretation……Page 44
Fig.€1. General congestion control structure…….Page 45
Fig.€2. Overall feedback loop…….Page 46
Remark: The RTT used in (18) could be the real-time measurement,……Page 47
A. Local Stability Result……Page 48
Remark: Source laws (24) (25) are not the only ones that satisfy……Page 49
A. Marking and Estimation……Page 50
B. Simulation Results……Page 51
A. Packet Implementation and Simulation Results……Page 52
VII. C ONCLUSION……Page 53
Proof of Theorem 3: As discussed in Section€IV-A, we parallel th……Page 54
L. Massoulie, Stability of distributed congestion control with h……Page 55
Z. Wang and F. Paganini, Global stability with time delay in net……Page 56
I. I NTRODUCTION……Page 57
Proposition 2: If $ {bf H}(1)=I$, there exists a constant $C_{q……Page 58
Proof: Since $mu (n)$ is stationary, we can easily see that $ {……Page 59
Proof: We first have $$eqalignno{{rm P}left {Q_{l}^{c} > xr……Page 60
A. Example of a Linearized Feedback Flow Control System……Page 61
B. Application……Page 62
C. Distributed Algorithm……Page 63
V. N UMERICAL R ESULTS……Page 64
Fig.€4. Tail probability at link 2…….Page 65
Fig.€9. Tail probability at link 2…….Page 66
D. Qiu and N. B. Shroff . (2001) Study of Predictive Flow Contro……Page 67
I. I NTRODUCTION……Page 69
B. Control Algorithms……Page 70
IV. ACC S CHEMES……Page 71
1) Congestion Estimation Protocol: Let us look at the definition……Page 72
C. Comparisons Between Vegas and Monaco……Page 73
D. Adaptive Virtual Delay Queueing……Page 74
B. Multiple Bottlenecks……Page 75
Fig.€8. Monaco with the same buffer as the above case (55 packet……Page 76
Fig.€10. Monaco with a large amount of background web traffic un……Page 77
VI. S UMMARY……Page 78
Proposition 2: The nonlinear programming problem $$eqalignno{h……Page 79
A. Venkatesan, An Implementation of Accumulation-Based Congestio……Page 80
I. I NTRODUCTION……Page 81
A. Congestion Control Schemes……Page 82
A. PFC and REM With Real Queue Marking……Page 83
Proof: From Lemma 1, for stability we require $$tau < {{ 1}ove……Page 84
Proof: The equilibrium marking probability when the disturbance……Page 85
Lemma 5: The linearized form of the system described by (2), (3)……Page 86
C. TCP Congestion Control and REM……Page 87
E. Multiple Users With Identical RTT……Page 88
Fig.€2. Evolution of the Queueing delay with PFC at source, VQ-b……Page 89
Fig.€7. Evolution of the Queueing delay with TCP at the source,……Page 90
Fig.€11. Comparison between RQ and VQ RED with TCP at the source……Page 91
W. Rudin, Real and Complex Analysis, 3rd ed. New York: McGraw-Hi……Page 92
I. I NTRODUCTION……Page 94
B. Proposed Integrated Dynamic Congestion Control Approach……Page 96
D. Dynamic Network Models……Page 97
Fig.€3. Time evolution of network system queue state obtained us……Page 98
B. Ordinary Traffic Control Strategy……Page 99
1) Simulation Model: Our ATM network model is shown in Fig.€4 …….Page 100
1) Steady State and Transient Behavior: Using the simulation mod……Page 101
Fig.€7. Switch 2 (last switch) time evolution of the Ordinary Tr……Page 102
Fig.€10. Network test configuration for demonstrating dynamic be……Page 103
V. C ONCLUSIONS……Page 104
Proof: The closed system is described by the (6) (11) . From (7)……Page 105
R. Satyavolu, K. Duvedi, and S. Kalyanaraman, Explicit Rate Cont……Page 106
B. Maglaris, D. Anastassiou, P. Sen, G. Karlsson, and J. Robbins……Page 107
I. I NTRODUCTION……Page 108
B. Window Adaptation……Page 109
A. Model for the Rate Modulating Process ${M_{k}}$……Page 110
C. Evolution of ${Z_{k}}$, and a Process ${X_{k}}$……Page 111
A. RATCP OldTahoe and TCP OldTahoe: Analysis and Simulation……Page 112
Fig.€5. Throughput variation of RATCP and TCP with the ephemeral……Page 113
C. Fairness……Page 114
D. Finite-Size File Transfers (HTTP-Like TCP Transfers)……Page 115
Random Loss: Fig.€14 shows the performance of web-like transfers……Page 116
VII. C ONCLUSIONS……Page 117
Transition Probability Calculations: New Arrivals, No Loss: $ R……Page 118
S. Abraham and A. Kumar, A new approach for asynchronous distrib……Page 119
T. V. Lakshman and U. Madhow, The performance of TCP/IP for netw……Page 120
I. I NTRODUCTION……Page 121
II. N ETWORK M ODEL……Page 122
A. Basic Algorithm……Page 123
Example 3.1.1: Consider the network of Fig.€1 . The maximum rate……Page 124
Complexity: The distributed implementation terminates in $2DM$ u……Page 125
Fig.€2. We study the relative computation error in a dynamic net……Page 126
IV. D ISCUSSION……Page 127
Proof of lemma 4: We prove by induction. Let $k=1$ . The algorit……Page 129
Proof of lemma 7: We prove by induction. We first prove the lemm……Page 130
Proof of lemma 9: For the first part, it is sufficient to prove……Page 131
T. Bially, B. Gold, and S. Seneff, A technique for adaptive voic……Page 132
D. Taubman and A. Zakhor, Multirate 3-D subband coding of video,……Page 133
I. I NTRODUCTION……Page 134
II. G ROUP DH O VERVIEW……Page 135
Fig.€1. The radix-2 butterfly scheme for establishing a group ke……Page 136
A. Minimizing Total Cost……Page 137
Lemma 3: Suppose $b=(b_{1},b_{2},cdots,b_{n})$, with $b_{j}leq……Page 138
Algorithm 3. Improved algorithm for calculating the length vecto……Page 139
A. Comparison of Total Cost……Page 140
B. Feasibility Comparison……Page 141
VI. S YSTEM S ENSITIVITY TO F ALSE C OSTS……Page 142
B. Sensitivity to Costs From Untrustworthy Users……Page 143
VII. C ONCLUSION……Page 144
Proof: We will show that there is an optimal solution in which o……Page 145
F. Fabris, A. Sgarro, and R. Pauletti, Tunstall adaptive coding……Page 146
I. I NTRODUCTION……Page 147
II. T HE B ASIC C ONE -B ASED T OPOLOGY C ONTROL A LGORITHM……Page 148
Example II.1: Suppose that $V={u_{0},u_{1},u_{2},u_{3},v}$ . (……Page 149
Fig.€4. Illustration for the proof of Lemma II.1…….Page 150
A. The Shrink-Back Operation……Page 151
C. Pairwise Edge Removal……Page 152
IV. D EALING W ITH R ECONFIGURATION, A SYNCHRONY, AND F AILURES……Page 153
A. Simulation Environment……Page 154
B. Network Topology Characteristics……Page 155
C. Network Performance Analysis……Page 156
VI. C ONCLUSION……Page 157
G. J. Pottie and W. J. Kaiser, Wireless integrated network senso……Page 158
E. W. Zegura, K. Calvert, and S. Bhattacharjee, How to model an……Page 159
I. I NTRODUCTION……Page 160
II. R ELATED W ORK……Page 161
Definition 1: The probability of error $P_e$ is defined as the p……Page 162
C. Bayes Error and Blocking Probability……Page 163
C. Numerical Analysis……Page 164
B. Bayes Error……Page 165
D. Numerical Analysis……Page 166
1) Gaussian Approximation: An important step to obtain a close f……Page 167
A. Simulation Setup……Page 168
VIII. C ONCLUSION……Page 169
D ERIVATION OF THE C ORRELATION C OEFFICIENT $rho_{g}$……Page 170
J. Yates, Wavelength converters in dynamically-reconfigurable WD……Page 171
H. Cramer, Mathematical Methods of Statistics . Princeton, NJ: P……Page 172
I. I NTRODUCTION……Page 173
Proof: Consider the case where $N$ is even, and envision a cut w……Page 174
Proof: We will conduct a proof by contradiction. Suppose there d……Page 175
Lemma 2: Given an adjacent pair of calls, it is possible to fit……Page 176
Proof: We will provide a proof by construction. Consider the fir……Page 177
Proof: The proof is by construction using the following algorith……Page 178
1) Symmetric Multi-Port Networks: We first consider the case of……Page 179
Proof: First, if the traffic set is unconnected, we use an appro……Page 180
Lemma 6: If for a given RWA there does not exist any converter a……Page 181
2) Symmetric Node Architecture: In other cases, we may prefer to……Page 182
Proof: Index the nodes $n_{1}, ldots, n_{N}$ such that $n_{1},……Page 183
V. C ONCLUSIONS……Page 184
Theorem 8: For $k in {1,ldots,N/2}$ and $N/2$ integer, $$fl……Page 185
A. F. Elrafaie, Multiwavelength survivable ring network architec……Page 186
Fig.€1. Example of the DIR method…….Page 187
A. Framework of the Analysis……Page 188
B. Blocking Due to Insufficient Network Capacity……Page 189
Calculating $f_{i,j}$ and $f_{i,jvert i,j^{prime}}(t_{j})$: Va……Page 190
E. Computational Complexity……Page 191
Fig.€2. Example of the specific SIR method…….Page 192
Calculating $v_{R,j}(n)$: $v_{R,j}(n)$ can be calculated iterati……Page 193
Fig.€4. Traffic blocking of the centralized method in the PacNet……Page 194
Fig.€8. Blocking analysis of the DIR method in the PacNet where……Page 195
V. C ONCLUSIONS……Page 196
L. Li and A. K. Somani, A new analytical model for multifiber WD……Page 197
I. I NTRODUCTION……Page 198
Example 1 Spare Capacity Sharing: In the five-node network in Fi……Page 199
III. A S PARE P ROVISION M ATRIX B ASED SCA M ODEL……Page 201
Example 2 Matrix Method: In the five-node undirected network in……Page 202
Fig.€3. SCA structure for protecting arbitrary failures…….Page 203
Example 3 Find a Backup Path in SSR: The Example 2 in Fig.€1 is……Page 204
Fig.€5. Find a backup path of flow 11 using successive survivabl……Page 205
Fig.€13. Network 8 ( $N=50$, $L=82$ )…….Page 206
Fig.€15. Comparison of redundancy $eta =S/W$ versus CPU time of……Page 207
VII. N ODE F AILURES……Page 208
TABLE V N UMERICAL R ESULTS FOR N ODE F AILURES……Page 209
W. D. Grover, R. R. Iraschko, and Y. Zheng, Comparative methods……Page 210
Y. Liu, D. Tipper, and P. Siripongwutikorn, Approximating optima……Page 211
IEEE Transactions on Networking (February)
Free Download
Be the first to review “IEEE Transactions on Networking (February)” Cancel reply
You must be logged in to post a review.
Reviews
There are no reviews yet.