The theory of functions of a real variable and the theory of Fourier’s series

Free Download

Authors:

Edition: 2

Volume: Volume 2

Size: 17 MB (18096695 bytes)

Pages: 790/790

File format:

Language:

Publishing Year:

Category:

Hobson E.W.


Table of contents :
Title page ……Page 1
Date-line ……Page 2
Preface ……Page 3
CAMBRIDGE UNIVERSITY PRESS ……Page 5
Title ……Page 6
CONTENTS ……Page 7
1 Introduction ……Page 11
2-4 Non-convergent arithmetic series ……Page 12
5 The O—o notation ……Page 16
6 A general property of sequences ……Page 17
7-12 Convergence and divergence of series with positive terms ……Page 19
13-23 Criteria of convergence and divergence of series with positive terms ……Page 25
24-26 The convergence of series in general ……Page 44
27-28 Cesaro’s summation by arithmetic means ……Page 50
29 Series of transfinite type ……Page 53
30-36 Double sequences and double series ……Page 55
37-38 The convergence of the Cauchy-product of two series ……Page 66
39-43 The convergence of infinite products ……Page 68
44-46 The summability of series ……Page 75
47-54 Extension of Cesaro’s theory of summability ……Page 80
55-57 The equivalence of Cesaro’s and Holder’s methods of summation ……Page 95
58-60 The equivalence of Cesaro’s and Riesz’ methods of summation ……Page 100
61-63 Introduction ……Page 109
64-65 Functions related with a given function ……Page 112
66 Uniform convergence of sequences and series ……Page 114
67-68 Simply uniform convergence ……Page 115
69 Uniform divergence and uniform approach ……Page 118
70-76 Points of uniform and of non-uniform convergence ……Page 119
77-81 Tests of uniform convergence ……Page 125
82-85 The continuity of a sum-function at a point ……Page 133
86-89 The continuity of a sum-function in a domain ……Page 139
90-91 The measure of non-uniform convergence ……Page 143
92-96 The distribution of points of non-uniform convergence ……Page 145
97 Functions involving a parameter ……Page 151
98 The uniform convergence of infinite products ……Page 152
99-101 The convergence of a sequence in a measurable domain ……Page 154
102-107 Monotone sequences of functions ……Page 158
108-110 The extension of functions ……Page 164
111-113 Classes of monotone sequences ……Page 167
114-119 Uniform oscillation of a sequence of functions ……Page 170
120 Families of equi-continuous functions ……Page 177
121-123 Homogeneous oscillation ……Page 179
124-133 Introduction ……Page 182
134-135 Properties of power-series ……Page 202
136-138 The multiplication of power-series ……Page 204
139-140 Term by term differentiation and integration of power-series ……Page 206
141-150 Taylor’s series ……Page 208
151 Maxima and Minima of a function of one variable ……Page 222
152 Taylor’s theorem for functions of two variables ……Page 223
153-155 Maxima and Minima of functions of two variables ……Page 224
156-158 The limits of a series involving a parameter ……Page 231
159 Introduction ……Page 238
160-162 Weierstrass’ theorem for functions of two or more variables ……Page 240
163-165 Unbounded continuous functions ……Page 245
166-167 Standard sets of continuous functions ……Page 248
168-172 Convergence of sequences on the average ……Page 249
173-177 A classification of summable functions ……Page 259
178-180 Properties of a measurable function ……Page 264
181 Descriptive properties of sets of points ……Page 268
182-184 Sets of points of orders 1 and 2 ……Page 270
185-190 Functions representable by series or sequences of continuous functions ……Page 274
191-192 The convergence of monotone sequences of functions ……Page 284
193-196 Baire’s classification of functions ……Page 286
197 Property of a measurable function ……Page 292
198-200 The primitives of a function in a finite interval ……Page 294
201-213 The integration of series and sequences ……Page 299
214-218 Integration of series defined in an interval ……Page 313
219 Sequences of functions that are integrable ($R$) ……Page 322
220 Sequences of integrals of continuous functions ……Page 327
221-223 The oscillations of a sequence of integrals ……Page 328
224-230 The limit of an integral containing a parameter ……Page 332
231-235 The differentiation of series ……Page 342
236-238 Inversion of the order of repeated integrals ……Page 348
239-243 The inversion of repeated integrals over an infinite domain ……Page 354
244-251 Differentiation of an integral with respect to a parameter ……Page 363
252-255 Generalized Integrals ……Page 373
256-260 The method of monotone sequences ……Page 384
261 Tonelli’s theory of integration ……Page 390
262-263 Perron’s definition of an integral ……Page 392
264-266 The summability of integrals ……Page 394
267-269 The condensation of singularities ……Page 399
270 Cantor’s method of condensation of singularities ……Page 409
271-275 The construction of non-differentiable functions ……Page 411
276-278 The construction of a differentiable everywhere-oscillating function ……Page 422
279-285 The general convergence theorem ……Page 432
286-287 The general convergence theorem in the case of non-summable functions ……Page 445
288-289 Necessity of the conditions of the general convergence theorem ……Page 448
290-291 Singular Integrals ……Page 453
292-297 The convergence of singular integrals ……Page 456
299 The failure of convergence or of uniform convergence of the singular integral ……Page 466
300-301 Applications of the theory ……Page 469
302-311 The convergence of the integrals of products of functions ……Page 474
313-314 The problem of vibrating strings ……Page 486
315 Special cases of trigonometrical scries ……Page 489
316-317 Later history of the theory ……Page 490
318-321 The formal expression of Fourier’s series ……Page 492
322 The general definition of a Fourier’s series ……Page 497
323 The partial sums of a Fourier’s series ……Page 499
324 The convergence of Fourier’s series ……Page 501
325-327 Particular cases of Fourier’s series ……Page 503
328-331 Dirichlet’s investigation of Fourier’s series ……Page 512
332-333 Application of the second mean value theorem ……Page 519
334-339 The limiting values of Fourier’s coefficients ……Page 524
340-347 Conditions of convergence at a point or in an interval ……Page 531
348-350 Sufficient conditions of uniform convergence of Fourier’s series ……Page 545
351-357 Points of non-convergence of Fourier’s series for a continuous function ……Page 549
358-359 The absolute convergence of trigonometrical series ……Page 558
360-364 The integration of Fourier’s series ……Page 561
365-370 The series of arithmetic means related to Fourier’s series ……Page 567
371 The properties of a certain class of functions ……Page 574
372-375 The summability $(C, k)$ of Fourier’s series ……Page 577
376 The Cesaro summation of a Fourier-Denjoy series ……Page 581
377-381 Properties of the Fourier’s constants ……Page 583
382-384 The substitution of a Fourier’s series in an integral ……Page 591
385-386 The formal multiplication of trigonometrical series ……Page 595
387 An extension of the theorem of arithmetic means ……Page 597
388-396 Extension and generalization of Parseval’s theorem ……Page 601
397-399 M. Riesz’ extension of Parseval’s theorem ……Page 620
400-405 Systems of Fourier’s constants ……Page 624
406-409 Convergence factors for Fourier’s series ……Page 633
410-414 Poisson’s method of summation ……Page 639
415-416 Approximate representation of functions by finite trigonometrical series ……Page 646
417-419 The differentiation of Fourier’s series ……Page 649
420-426 Riemann’s theory of trigonometrical series ……Page 655
427 Investigations subsequent to those of Riemann ……Page 666
428-432 The limits of the coefficients in a trigonometrical series ……Page 669
433-439 Properties of the generalized second derivative of a function ……Page 674
440 The convergence of a trigonometrical series at a point ……Page 682
441-450 The uniqueness of a trigonometrical series which represents a function ……Page 683
451-454 Restricted Fourier’s series ……Page 696
455-458 Convergence and summability of the series allied with a Fourier’s series ……Page 702
459-461 Double Fourier’s series ……Page 708
462-463 Functions of bounded variation ……Page 712
464-466 The convergence of the double scries ……Page 715
467 The integrated series ……Page 722
468 The Cesaro summation of a double Fourier’s series ……Page 725
469 The Poisson sum of the double series ……Page 727
470 Parseval’s theorem for the double series ……Page 728
471-472 Fourier’s single integral ……Page 730
473-474 Fourier’s repeated integral ……Page 735
475-477 The summability $(phi)$ of a Fourier’s repeated integral ……Page 738
478-480 The summability $(C, r)$ of Fourier’s repeated integral ……Page 747
481-488 Fourier transforms ……Page 752
489 Introduction ……Page 763
490 The convergence of the series of orthogonal functions ……Page 765
491 The failure of convergence at a particular point ……Page 767
492-493 Extension of the theorems of Parseval and Riesz-Fischer ……Page 769
494-495 The convergence of series of orthogonal functions ……Page 772
496 Series of Sturm-Liouville functions ……Page 781
CORRECTIONS AND ADDITIONS TO VOLUME I ……Page 783
LIST OF AUTHORS QUOTED IN VOLUME II ……Page 786
GENERAL INDEX TO VOLUME II ……Page 789

Reviews

There are no reviews yet.

Be the first to review “The theory of functions of a real variable and the theory of Fourier’s series”
Shopping Cart
Scroll to Top