Introduction to tensor calculus for general relativity

Free Download

Authors:

Edition: lecture notes

Size: 3 MB (3328475 bytes)

Pages: 427/427

File format:

Language:

Publishing Year:

Category:

Bertschinger E.

There arc three essential ideas underlying general relativity (OR). The first is that space time may be described as a curved, four-dimensional mathematical structure called a pscudo Ricmannian manifold. In brief, time and space together comprise a curved four dimensional non-Euclidean geometry. Consequently, the practitioner of OR must be familiar with the fundamental geometrical properties of curved spacctimc. In particular, the laws of physics must be expressed in a form that is valid independently of any coordinate system used to label points in spacetimc.

Table of contents :
01 gr1_1.pdf……Page 1
02 gr1_2.pdf……Page 12
03 gr1_3.pdf……Page 21
04 gr2_1.pdf……Page 29
05 gr2b.pdf……Page 35
06 gr2_2.pdf……Page 41
07 gr3.pdf……Page 46
08 glens.pdf……Page 58
09 gr2_3.pdf……Page 67
10 gr4.pdf……Page 72
11 gr5.pdf……Page 84
12 gr6.pdf……Page 110
13 gr4.pdf……Page 128
14 9712019.pdf……Page 140
15 grtinypdf.pdf……Page 378
ps1.pdf……Page 402
ps2.pdf……Page 404
ps3.pdf……Page 406
ps4.pdf……Page 409
ps5.pdf……Page 411
ps6.pdf……Page 413
ps7.pdf……Page 415
ps8.pdf……Page 417
ps9.pdf……Page 419
ps10.pdf……Page 422
ps11.pdf……Page 424
ps12.pdf……Page 426

Reviews

There are no reviews yet.

Be the first to review “Introduction to tensor calculus for general relativity”
Shopping Cart
Scroll to Top