Partial differential equations in action: From modelling to theory

Free Download

Authors:

Edition: 1st ed. 2008. Corr. 2nd printing 2010

Series: Universitext

ISBN: 8847007518, 9788847007512

Size: 4 MB (4109757 bytes)

Pages: 568/568

File format:

Language:

Publishing Year:

Category:

Sandro Salsa8847007518, 9788847007512

This book is designed as an advanced undergraduate or a first-year graduate

course for students from various disciplines like applied mathematics,

physics, engineering.

The main purpose is on the one hand to train the students to appreciate the

interplay between theory and modelling in problems arising in the applied

sciences; on the other hand to give them a solid theoretical background for

numerical methods, such as finite elements.

Accordingly, this textbook is divided into two parts.

The first one has a rather elementary character with the goal of

developing and studying basic problems from the macro-areas of diffusion,

propagation and transport, waves and vibrations. Ideas and connections with

concrete aspects are emphasized whenever possible, in order to provide

intuition and feeling for the subject.

For this part, a knowledge of advanced calculus and ordinary differential

equations is required. Also, the repeated use of the method of separation of

variables assumes some basic results from the theory of Fourier series,

which are summarized in an appendix.

The main topic of the second part is the

development of Hilbert space methods for the variational formulation and

analysis of linear boundary and initial-boundary value problemsemph{. }%

Given the abstract nature of these chapters, an effort has been made to

provide intuition and motivation for the various concepts and results.

The understanding of these topics requires some basic knowledge of Lebesgue

measure and integration, summarized in another appendix.

At the end of each chapter, a number of exercises at different level of

complexity is included. The most demanding problems are supplied with

answers or hints.

The exposition if flexible enough to allow substantial changes without

compromising the comprehension and to facilitate a selection of topics for a

one or two semester course.


Table of contents :
Cover……Page 1
Partial Differential Equations in Action From Modelling to Theory……Page 2
Preface……Page 5
Contents……Page 8
1 Introduction……Page 15
2 Diffusion……Page 27
3 The Laplace Equation……Page 116
4 Scalar Conservation Laws and First Order Equations……Page 170
5 Waves and Vibrations……Page 235
6 Elements of Functional Analysis……Page 316
7 Distributions and Sobolev Spaces……Page 381
8 Variational Formulation of Elliptic Problems……Page 445
9 Weak Formulation of Evolution Problems……Page 506
Appendix A Fourier Series……Page 544
Appendix B Measures and Integrals……Page 550
Appendix C Identities and Formulas……Page 558
References……Page 561
Index……Page 564

Reviews

There are no reviews yet.

Be the first to review “Partial differential equations in action: From modelling to theory”
Shopping Cart
Scroll to Top