Moduli of Smoothness

Free Download

Authors:

Edition: 1

Series: Springer Series in Computational Mathematics 9

ISBN: 9780387965369, 0-387-96536-X

Size: 1 MB (1304787 bytes)

Pages: 227/232

File format:

Language:

Publishing Year:

Category: Tags: ,

Z. Ditzian, V. Totik (auth.)9780387965369, 0-387-96536-X

The subject of this book is the introduction and application of a new measure for smoothness offunctions. Though we have both previously published some articles in this direction, the results given here are new. Much of the work was done in the summer of 1984 in Edmonton when we consolidated earlier ideas and worked out most of the details of the text. It took another year and a half to improve and polish many of the theorems. We express our gratitude to Paul Nevai and Richard Varga for their encouragement. We thank NSERC of Canada for its valuable support. We also thank Christine Fischer and Laura Heiland for their careful typing of our manuscript. z. Ditzian V. Totik CONTENTS Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 PART I. THE MODULUS OF SMOOTHNESS Chapter 1. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.1. Notations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2. Discussion of Some Conditions on cp(x). . . . • . . . . . . . • . . • . . • • . 8 . . . • . 1.3. Examples of Various Step-Weight Functions cp(x) . . • . . • . . • . . • . . . 9 . . • Chapter 2. The K-Functional and the Modulus of Continuity … . … 10 2.1. The Equivalence Theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . 10 . . . . . . . . . 2.2. The Upper Estimate, Kr.tp(f, tr)p ~ Mw;(f, t)p, Case I . . . . . . . . . . . . 12 . . . 2.3. The Upper Estimate of the K-Functional, The Other Cases. . . . . . . . . . 16 . 2.4. The Lower Estimate for the K-Functional. . . . . . . . . . . . . . . . . . . 20 . . . . . Chapter 3. K-Functionals and Moduli of Smoothness, Other Forms. 24 3.1. A Modified K-Functional . . . . . . . . . . . . . . . . . . . . . . . . . . 24 . . . . . . . . . . 3.2. Forward and Backward Differences. . . . . . . . . . . . . . . . . . . . . . 26 . . . . . . . 3.3. Main-Part Modulus of Smoothness. . . . . . . . . . . . . . . . . . . . . . 28 . . . . . . .

Table of contents :
Front Matter….Pages i-ix
Introduction….Pages 1-4
Front Matter….Pages 5-5
Preliminaries….Pages 7-9
The K -Functional and the Modulus of Continuity….Pages 10-23
K -Functionals and Moduli of Smoothness, Other Forms….Pages 24-35
Properties of ω ϕ r ( f,t ) p ….Pages 36-45
More General Step-Weight Functions ϕ ….Pages 46-54
Weighted Moduli of Smoothness….Pages 55-74
Front Matter….Pages 75-75
Algebraic Polynomial Approximation….Pages 77-89
Weighted Best Polynomial Approximation….Pages 90-111
Exponential-Type or Bernstein-Type Operators….Pages 112-157
Weighted Approximations by Exponential-Type Operators….Pages 158-179
Weighted Polynomial Approximation in L p ( R )….Pages 180-196
Polynomial Approximation in Several Variables….Pages 197-210
Comparisons and Conclusions….Pages 211-216
Back Matter….Pages 217-227

Reviews

There are no reviews yet.

Be the first to review “Moduli of Smoothness”
Shopping Cart
Scroll to Top