David Mumford (auth.)354063293X, 9783540632931
Table of contents :
Front Matter….Pages N2-V
Front Matter….Pages 1-1
Some algebra….Pages 2-7
Irreducible algebraic sets….Pages 7-15
Definition of a morphism: I….Pages 15-24
Sheaves and affine varieties….Pages 24-35
Definition of prevarieties and morphism….Pages 35-45
Products and the Hausdorff Axiom….Pages 46-55
Dimension….Pages 56-67
The fibres of a morphism….Pages 67-75
Complete varieties….Pages 75-80
Complex varieties….Pages 80-89
Front Matter….Pages 91-92
Spec (R)….Pages 93-108
The category of preschemes….Pages 108-121
Varieties are preschemes….Pages 121-131
Fields of definition….Pages 131-142
Closed subpreschemes….Pages 143-155
The functor of points of a prescheme….Pages 155-167
Proper morphisms and finite morphisms….Pages 168-176
Specialization….Pages 177-189
Front Matter….Pages 191-191
Quasi-coherent modules….Pages 193-205
Coherent modules….Pages 205-215
Front Matter….Pages 191-191
Tangent cones….Pages 215-228
Non-singularity and differentials….Pages 228-242
Étale morphisms….Pages 242-254
Uniformizing parameters….Pages 254-259
Non-singularity and the UFD property….Pages 259-271
Normal varieties and normalization….Pages 272-286
Zariski’s Main Theorem….Pages 286-295
Flat and smooth morphisms….Pages 295-308
Back Matter….Pages 309-315
Reviews
There are no reviews yet.