Irina T. Sorokina, Konstantin L. Vodopyanov9783540006213, 3540006214
Table of contents :
cover.jpg……Page 1
front-matter.pdf……Page 2
Solid-State Mid-Infrared Laser Sources……Page 4
Preface……Page 6
Contents……Page 9
Introduction……Page 17
Historical……Page 19
Typical Heterojunction Laser Structure……Page 21
Maximum Temperature of Operation……Page 24
Threshold Current Limitations……Page 25
Maximum Operating Temperature in the 2–522m Wavelength Domain……Page 27
Antimonide Quantum Well Laser Diodes for the 2–322m Spectral Range……Page 29
Strained GaInAsSb Alloys and Quantum Wells……Page 30
Fabrication of Antimonide Quantum Well Laser Diodes……Page 36
Antimonide QW Laser Diodes for the 2.0–2.322m Spectral Range……Page 39
GaInAsSb QW Laser Diodes Emitting beyond 2.322m……Page 44
Characterization of Antimonide-Based Laser Diodes Dedicated to Gas Detection……Page 49
Laser Diode Characterization for Gas Detection Applications……Page 50
Tuning Properties of Antimonide-Based Laser Diodes……Page 52
Gas Detection with Antimonide-Based Laser Diodes……Page 54
3–522m Interband Type-II Laser Diodes……Page 56
InAsSb/InAs Type-II Multi-qantum Well Laser……Page 57
InAs/GaInSb Type-III “W” Laser……Page 61
Conclusion……Page 64
References……Page 66
Index……Page 76
Introduction……Page 78
Basic Working Principles of QC Lasers……Page 81
Gain Region with Double-phonon Resonance……Page 83
Surface Grating with Lateral Current Injection……Page 85
Junction Down Mounting……Page 87
Measurement Setup……Page 88
Edge Emitting DFB Laser at 1022m……Page 89
Surface Emitting 1022m DFB Laser……Page 91
Improved Average Power Operation at 1022m……Page 93
High Temperature Operation at 5.322m……Page 94
DFB Lasers with InP Over-Grown Grating……Page 97
High Power Junction Down Mounted Lasers……Page 99
Room Temperature Continuous Wave Operation of QC Lasers……Page 101
Photo-Acoustic Spectroscopy……Page 103
Optical Data Link Using a QC Laser……Page 106
References……Page 109
Index……Page 114
Introduction to Tunable Mid-IR Laser Sources……Page 116
Frequency Conversion Processes……Page 119
Nonlinear Optical Coefficient……Page 122
Phase Matching……Page 124
Birefringent Phase Matching……Page 126
Acceptance Angle and Acceptance Bandwidth……Page 128
Conversion Efficiency……Page 129
Quasi-phase-matching……Page 133
Material Considerations……Page 137
Selection of Nonlinear Medium……Page 138
Pump and Signal Laser Sources for Difference Frequency Generation……Page 140
Difference Frequency Laser Sources Applied in Gas Sensing……Page 141
Experimental Set-Up and System Performance……Page 144
Nd:YAG Pump Laser……Page 145
External Cavity Diode Laser……Page 146
Tuning with Periodically Poled LiNbO3……Page 147
Photoacoustic Spectroscopy……Page 148
Cavity Ring-Down Spectroscopy……Page 149
Medicine……Page 150
Examples of Gas Spectroscopy Performed with Our DFG Laser Source……Page 151
Conclusions and Outlook……Page 154
References……Page 155
Index……Page 160
Introduction……Page 163
Principle of OPO Operation……Page 164
Comparison of NLO Materials……Page 167
OPOs Based on PP LN……Page 168
OPOs Based on PP KTP and PP RTA……Page 171
OPOs Using Conventional Phase-matching in Oxides……Page 173
Comparison of NLO Materials Suitable for >522m……Page 175
OPOs Based on AGS and AGSe……Page 176
OPOs Based on ZGP……Page 177
OPOs Based on Other Crystals……Page 182
Traveling-Wave Optical Parametric Generators (OPGs)……Page 183
OPGs Based on PP LN……Page 184
OPGs Based on ZGP……Page 185
OPGs Based on GaSe……Page 186
Narrow-Linewidth OPOs……Page 187
Using Intracavity Spectral-Narrowing Elements……Page 188
Narrow-Linewidth Optical Parametric Generator–Optical Parametric Amplifier (OPG–OPA) Systems……Page 189
OPOs with Injection Seeding……Page 190
Using a Doubly Resonant Cavity……Page 191
Emerging Nonlinear Optical Materials for Mid-IR Applications……Page 193
Summary and Concluding Remarks……Page 195
References……Page 196
Index……Page 201
Introduction……Page 203
Optical Parametric Process……Page 205
Optical Parametric Gain……Page 207
Optical Parametric Amplification……Page 208
Mid-Infrared Parametric Generation……Page 210
Nonlinear Material……Page 212
Laser Pump Source……Page 214
Mid-Infrared Nonlinear Materials……Page 215
Mid-Infrared Ultrafast OPOs……Page 220
Mid-Infrared Picosecond OPOs……Page 221
Mid-Infrared Femtosecond OPOs……Page 225
Mid-Infrared Continuous-Wave OPOs……Page 231
Summary……Page 236
References……Page 238
Index……Page 243
Introduction……Page 244
Fiber Materials……Page 245
Silicates……Page 246
Ceramics……Page 247
Fiber Designs for Cladding Pumping……Page 248
Fiber-Laser Resonators……Page 250
Spectroscopic and Laser Properties of Rare-Earth Ions……Page 251
Spectra of Rare-Earth Ions in Glasses……Page 252
Intraionic Processes……Page 253
Interionic Processes……Page 255
Overview of Mid-Infrared Fiber Lasers……Page 257
Three-Level Lasers at 1.9–2.022m……Page 258
Four-Level Lasers at 2.3–2.522m……Page 259
Holmium-Doped Fiber Lasers at 2.122m and 2.922m……Page 260
Three-Level Lasers at 2.122m……Page 261
Four-Level Lasers at 2.922m……Page 262
Excited-State Absorption and Cascade Lasing……Page 263
Lifetime Quenching by Pr3+ Co-Doping……Page 264
Energy Recycling by Energy-Transfer Upconversion……Page 265
Fiber Lasers at Wavelengths Beyond 322m……Page 267
Future Mid-Infrared Fiber Lasers……Page 268
Conclusions……Page 269
References……Page 270
Index……Page 279
Introduction……Page 281
Historical Overview……Page 283
Principles of Solid-State Lasers……Page 286
Ion-Host Interaction: Octahedrally versus Tetrahedrally Coordinated Ions, Energy Levels, Configurational-Coordinate Model……Page 287
Intra- and Interionic Interactions: Ground-State Absorption, Excited-State Absorption and Upconversion……Page 297
Energy Transfer Processes……Page 300
Influence of Spectroscopic Parameters on Laser Properties……Page 307
Reaching the Threshold……Page 309
Pump Sources……Page 311
Cavity Design……Page 312
Tuning Methods……Page 315
Q-switched and Mode-Locked Operation……Page 318
Mid-Infrared Lasers……Page 320
Ni2+–, Co2+–Doped Lasers……Page 321
Cr2+–, Fe2+–Doped Lasers……Page 325
Color Center Lasers……Page 336
Tm3+– and Ho3+–Doped Lasers……Page 340
Er3+–Doped Lasers……Page 345
Conclusion and Outlook……Page 347
References……Page 349
Index……Page 377
Introduction (Historical and Theoretical Background)……Page 378
Nanosecond SRS Based on Ba(NO3)2 Crystals……Page 382
LiIO3 Raman Lasers……Page 388
Picosecond Raman Lasers Based on KGW Crystals……Page 389
Nanosecond Raman Lasers Based on KGW Crystals……Page 393
Search for New SRS Materials and Comparative Spectroscopy Study……Page 395
New BaWO4 SRS Crystals……Page 398
BaWO4 and SrWO4 Nanosecond Raman Lasers……Page 399
Mid-IR BaWO4 Raman Laser……Page 401
BaWO4 Picosecond Raman Frequency Shifters……Page 403
PbWO4 SRS Shifters and Raman Lasers……Page 406
Diode-Pumped CW Raman Fiber Lasers……Page 407
Raman Fiber Lasers Based on Germanosilicate Fibers……Page 408
Phosphosilicate Fiber-Based Raman Lasers……Page 409
References……Page 415
Index……Page 425
Introduction……Page 428
Theory of THz-Wave Parametric Generation Using Polaritons……Page 430
Injection-Seeded THz-Wave Parametric Generator (is-TPG)……Page 433
Experimental Setup……Page 434
Power Enhancement……Page 435
Spectrum Narrowing……Page 437
Wide Tunability……Page 439
Arrayed Silicon Prism Coupler for a THz-Wave Parametric Oscillator……Page 442
Experimental Setup……Page 443
Experimental Results……Page 444
Tunable THz-Wave Generation from DAST Crystal Using Dual Signal-Wave Parametric Oscillation of PPLN……Page 447
Experimental Setup……Page 448
Experimental Results……Page 449
Conclusion……Page 450
References……Page 451
Index……Page 455
Introduction……Page 456
Photoconductive Switch……Page 457
Quantum Confined Structure……Page 462
Semiconductor Surface……Page 468
Nonlinear Optical Process……Page 471
References……Page 473
Index……Page 476
Solid-State Mid-IR Spectroscopic Laser Sources……Page 477
Lead-Salt Diode Lasers……Page 479
Antimonide Diode Lasers……Page 482
Quantum Cascade Lasers……Page 483
Tunable Solid-State Lasers……Page 486
Class “B” Laser Sources……Page 487
Near-IR Pump Laser Sources for Parametric Frequency Conversion……Page 488
Sources Based on Difference Frequency Generation (DFG)……Page 489
Tunable Optical Parametric Oscillators……Page 493
Fundamentals of Absorption Spectroscopy for Trace Gas Detection……Page 494
Spectroscopic Techniques: Signal Enhancement and Noise Reduction……Page 498
Balanced Beam and Balanced Ratiometric Detection (Noise Reduction)……Page 499
Wavelength and Frequency-Modulation Spectroscopy (Noise Reduction)……Page 502
Long Optical Path Length Spectroscopy (Signal Enhancement)……Page 504
Cavity-Enhanced Spectroscopy Methods (Signal Enhancement)……Page 505
Cavity Ring-Down Spectroscopy……Page 507
Cavity-Enhanced Absorption Spectroscopy……Page 508
Photoacoustic and Photothermal Spectroscopy (Signal Enhancement)……Page 510
Mid-Infrared Spectroscopic Applications……Page 512
Lead-Salt Diode Laser Based Spectrometer for Airborne Atmospheric Chemistry Studies……Page 513
Quantum-Cascade Laser Based Trace Gas Sensors in the Life Sciences……Page 518
Design and Applications of Fiber Based Difference Frequency Based Mid-IR Gas Sensors……Page 522
Summary and Outlook……Page 528
References……Page 529
Index……Page 544
Introduction……Page 549
Absorbers and Naturally Occurring Chromophores……Page 550
Erbium YAG Laser……Page 552
Photothermal Laser–Tissue Interaction……Page 554
Pulsed Versus CW Irradiation……Page 556
IR Photothermal Ablation……Page 559
Photospallation……Page 560
Histology and Histo-micrometry……Page 561
Experimental Photothermal Ablation Using Free Electron Lasers (FEL)……Page 562
The Influence of Specific Absorbers in the Target Material……Page 563
Feedback Laser Control……Page 565
Gynecology……Page 567
Neurosurgery……Page 568
Dermatology……Page 569
Dental Surgery……Page 571
Cardiovacular Surgery, Angioplasty……Page 573
Perspective of a Tuneable IR Laser Source……Page 574
References……Page 576
Index……Page 583
Index……Page 585
Reviews
There are no reviews yet.