Solid-state Hydrogen Storage Materials and Chemistry

Free Download

Authors:

Series: Woodhead Publishing in Materials

ISBN: 1845692705, 9781845692704, 1420077880, 9781420077889

Size: 23 MB (23932067 bytes)

Pages: 583/583

File format:

Language:

Publishing Year:

Category: Tags: , ,

G. Walker1845692705, 9781845692704, 1420077880, 9781420077889

Hydrogen fuel cells are emerging as a major alternative energy source in transportation and other applications. Central to the development of the hydrogen economy is safe, efficient and viable storage of hydrogen. Solid-state hydrogen storage: Materials and chemistry reviews the latest developments in solid-state hydrogen storage. Part one discusses hydrogen storage technologies, hydrogen futures, hydrogen containment materials and solid-state hydrogen storage system design. Part two reviews the analysis of hydrogen interactions including structural characterisation of hydride materials, neutron scattering techniques, reliably measuring hydrogen uptake in storage materials and modelling of carbon-based materials for hydrogen storage. Part three analyses physically-bound hydrogen storage with chapters on zeolites, carbon nanostructures and metal-organic framework materials. Part four examines chemically-bound hydrogen storage including intermetallics, magnesium hydride, alanates, borohydrides, imides and amides, multicomponent hydrogen storage systems, organic liquid carriers, indirect hydrogen storage in metal ammines and technological challenges in hydrogen storage. With its distinguished editor and international team of contributors, Solid-state hydrogen storage: Materials and chemistry will be a standard reference for researchers and professionals in the field of renewable energy, hydrogen fuel cells and hydrogen storage.

Table of contents :
Cover Page
……Page 1
Title Page
……Page 2
Solid-state hydrogen storage: Materials and chemistry……Page 4
Contents……Page 6
Contributor contact details……Page 13
Preface……Page 17
Part I: Introduction……Page 19
1.1 Introduction……Page 20
1.2 High-pressure gas storage……Page 23
1.3 Liquid hydrogen……Page 24
1.4 Physically bound hydrogen……Page 25
1.5 Chemically bound hydrogen……Page 27
1.6 Hydrolytic evolution of hydrogen……Page 31
1.8 References……Page 32
2.2 Hydrogen technologies……Page 35
2.3 Hydrogen scenarios: from production to applications……Page 36
2.4.1 Hydrogen production……Page 40
2.4.2 Hydrogen storage……Page 41
2.4.3 Hydrogen transmission and distribution (T&D)……Page 42
Whole system incremental approach……Page 44
Step-change approach……Page 45
2.5.2 Portable fuel cells……Page 46
2.5.3 Stationary power……Page 48
2.5.4 Fuel cell vehicles (FCVs)……Page 49
2.5.5 Conclusions on applications……Page 51
2.6.1 Attitudes of the public……Page 52
2.7 Policy implications……Page 58
2.8 Conclusions……Page 61
2.9 References……Page 65
3.2 Materials challenges in hydrogen containment……Page 68
3.3 Hydrogen permeation……Page 70
3.4 Hydrogen embrittlement……Page 71
3.4.2 Effect of welding……Page 73
3.4.4 Effect of gas mixtures……Page 76
3.4.5 Effect of temperature……Page 78
3.4.6 Effect of cyclic loading……Page 79
3.5.1 Pressure vessels……Page 81
3.5.2 Pipelines……Page 82
3.6.1 Low-alloy and carbon steels……Page 83
3.6.2 Austenitic stainless steels……Page 86
3.6.4 Nickel alloys……Page 88
3.6.5 Aluminum alloys……Page 89
3.6.6 Other non-ferrous alloys……Page 90
3.6.8 Summary of materials selection……Page 91
3.7 Future trends……Page 92
3.8 Other sources……Page 93
3.10 References……Page 94
4.1 Introduction……Page 99
4.2 The behavior of solid-state hydrogen storage materials in systems……Page 101
4.3 Thermodynamic properties of hydrogen storage materials……Page 102
4.4 Thermal properties of hydrogen storage materials……Page 103
4.4.1 Thermal conductivity of a hydrogen storage packed particle bed……Page 104
Gas flow……Page 109
High thermal conductivity structures……Page 110
4.5.1 Absorption heat exchange……Page 111
4.5.2 Desorption heat exchange……Page 112
4.6.1 Volume expansion and decrepitation……Page 113
4.6.2 Contamination of metal hydrides – oxygen and water reactivity……Page 114
The thermochemistry characteristics of sodium alanates……Page 115
System implications of the oxidation reactions……Page 117
4.8 Future trends……Page 118
4.10 References……Page 119
Part II: Analysing hydrogen interactions……Page 121
5.1 Introduction……Page 122
5.2 Principles of diffraction……Page 123
5.3 X-ray and neutron diffraction……Page 127
5.3.1 Sources……Page 130
5.3.2 Powder diffractometers……Page 132
5.4 The use of powder diffraction data……Page 134
5.4.2 Powder indexing and extraction of Bragg intensities……Page 135
5.4.3 Structure solution from powder diffraction data……Page 136
5.4.4 Structure refinements – the Rietveld method……Page 137
5.5.1 Structure of Mg(BD4)2……Page 141
5.5.2 In situ diffraction studies of AlH3……Page 143
5.6 Future trends……Page 146
5.7 Sources of further information and advice……Page 147
5.8 References……Page 148
6.1 Introduction……Page 150
6.2.1 Advantages of the neutron scattering technique for investigating solid-state hydrogen storage systems……Page 151
6.3 Studies of light metal hydrides……Page 152
6.5 The basic theory of neutron scattering……Page 153
Incoherent inelastic scattering from a proton in a harmonic potential well: the Einstein oscillator model……Page 157
Comparison with ab initio calculations……Page 159
Incoherent scattering from systems with interacting protons……Page 160
6.6.2 Inelastic neutron scattering from molecular hydrogen……Page 163
6.6.3 The theory of quasi-elastic neutron scattering……Page 165
The Chudley–Elliott model……Page 167
Localised diffusion: the elastic structure factor……Page 168
6.7.1 Inelastic neutron scattering (INS) measurements on Laves phase hydrides……Page 169
6.7.2 Inelastic neutron scattering (INS) on alanates……Page 171
6.7.3 Inelastic neutron scattering (INS) measurements on hydrides of magnesium and its compounds……Page 172
6.7.4 Inelastic neutron scattering (INS) measurements on borohydrides……Page 173
6.8.1 Hydrogen trapped in carbon nanotubes……Page 174
6.8.2 Hydrogen trapped in zeolites……Page 178
6.8.3 Hydrogen trapped in ice clathrates……Page 180
6.8.4 Molecular hydrogen storage in metal oxide frameworks……Page 181
6.9.1 Quasi-elastic scattering studies of hydrogen in Laves phases……Page 182
6.9.2 Quasi-elastic scattering from hydrogen in alanates……Page 183
6.10 Conclusions……Page 184
6.11 References……Page 185
7.1 Introduction……Page 189
7.2 Compressibilities of hydrogen and deuterium……Page 190
7.3 Measurement regimes……Page 192
7.4 Measurement techniques……Page 194
7.4.1 Sieverts technique……Page 195
Large-aliquot effect……Page 198
Isobaric operation of a Sieverts hydrogenator……Page 200
7.4.2 Gravimetric technique……Page 202
7.5.1 Sieverts apparatus……Page 204
Equivalent volume model……Page 205
Divided volume model……Page 206
7.5.2 Gravimetric apparatus……Page 207
Two-sided balance with symmetric temperature distribution……Page 208
Single-sided balance……Page 209
7.6 The sample volume problem……Page 210
7.6.1 Is the calibrating gas inert?……Page 211
7.6.2 Sieverts technique……Page 213
7.6.3 Gravimetric technique……Page 214
7.7.1 Variable-volume technique……Page 215
7.8 Summary and conclusions……Page 217
7.10 References……Page 218
8.1 Introduction……Page 220
8.2 Hydrogen interactions with carbons: physisorption and chemisorption……Page 222
8.2.1 Physisorption……Page 223
8.2.2 Chemisorption……Page 225
8.3.1 Theoretical predictions of an ideal hydrogen storage medium……Page 226
8.3.2 The metal—H2 binding mechanism……Page 227
8.3.3 Further theoretical investigations……Page 229
8.3.4 Experimental attempts at realizing the theoretical predictions……Page 230
8.4 Conclusions and future trends……Page 231
8.6 References……Page 232
Part III: Physically bound hydrogen storage……Page 236
9.1 Introduction……Page 237
9.2 Hydrogen encapsulation at high temperatures……Page 238
9.3 Low-temperature physisorption……Page 241
9.4 Storage at room temperature: encapsulation, physisorption, chemisorption and spillover……Page 245
9.5 Spectroscopic studies……Page 248
9.6 Theoretical studies and modelling……Page 257
9.7 Other potential applications of zeolites in a hydrogen energy system……Page 262
9.8 Prospects for the use of zeolites in a hydrogen energy system……Page 263
9.9 Acknowledgements……Page 265
9.10 References……Page 266
10.1 Introduction……Page 275
10.2 Storage of hydrogen in solids……Page 276
10.3 Carbon nanostructures and hydrogen storage……Page 277
10.4 Supercritical adsorption in nanoporous materials……Page 281
10.5 Theory……Page 283
10.5.1 Virial expansion……Page 284
10.5.2 Langmuir model……Page 286
10.5.4 Dubinin pore-filling approach……Page 287
10.6.1 Activated carbons……Page 288
10.6.2 Single-wall nanotubes……Page 291
10.6.3 Other carbon nanostructures……Page 295
10.7 Beyond carbon nanostructures……Page 297
10.10 References……Page 298
11.1 Introduction……Page 302
11.1.1 Design principles……Page 303
Metal nodes……Page 304
11.2 Hydrogen storage in particular metal–organic framework (MOF) materials……Page 305
11.2.1 Prussian Blue analogues……Page 306
11.2.3 Isoreticular Zn(II) carboxylates: the iso-recticular metal–organic framework (IRMOF) series……Page 307
11.2.4 Cu(II) carboxylates……Page 312
11.2.6 Non-transition metal carboxylates……Page 314
11.2.7 Metal–organic frameworks (MOFs) based upon pyridine-carboxylate linkers……Page 315
11.2.8 Mn and Cu tetrazolates and related ligands……Page 316
11.3 Interactions of H2 with metal–organic frameworks: experiments and modelling……Page 317
11.3.1 Interactions of hydrogen with exposed metal sites……Page 318
11.3.2 Interactions of hydrogen with metal–organic frameworks (MOFs) without exposed metal sites……Page 320
11.3.3 Modelling……Page 321
11.5 References……Page 322
Part IV: Chemically bound hydrogen storage……Page 327
12.1 Introduction……Page 328
Pressure–composition isotherms……Page 330
12.2.2 Crystal structure aspects of metal hydrides……Page 332
12.2.3 Binary alloy/Intermetallic hydrides……Page 334
12.2.4 Effect of solid-state impurities – microalloying……Page 335
12.3 Long-term stability of metal hydrides……Page 338
12.4.1 Examples of thermal and pressure cycling of classical hydrides……Page 342
12.4.2 Decrepitation of hydrides – disproportionation aspects……Page 350
12.4.3 Intrinsic thermal cycling elemental vanadium alloyed with 0.5 at.%C hydrides……Page 351
12.5.1 Extrinsic gaseous impurity effects on LaNi5 and Fe-Ti……Page 354
12.5.2 Cycling test and response to oxygen as a minor impurity degradation behavior of AB5 hydrides……Page 356
12.6.1 Pressure extrinsic cycling studies on imide/amide system……Page 358
12.7 Conclusions……Page 359
12.9 References……Page 361
13.2 Background to magnesium and magnesium hydride……Page 370
13.2.1 Properties and structure……Page 372
13.3 Thermodynamics and hydride mechanisms……Page 375
13.4 Ball milling to improve hydrogen sorption behaviour……Page 376
13.5 Metal and alloy additives……Page 379
13.6 Metal oxide catalysts……Page 381
13.7 Kinetic models of hydrogen absorption……Page 385
13.8 Conclusions and future work……Page 387
13.9 References……Page 389
14.1 Introduction……Page 394
14.2.1 NaAlH4……Page 395
14.2.3 KAlH4……Page 396
14.2.5 Na3AlH6 and Li3AlH6……Page 401
Dehydrogenation reactions……Page 403
Rehydrogenation reactions……Page 405
14.3.2 Doped NaAlH4……Page 406
Mechanistic studies……Page 410
14.4 Density-functional calculations of alkali and alkaline-earth alanates……Page 417
14.4.1 Crystal structures of alanates……Page 418
14.4.3 Stability and thermodynamics of decomposition……Page 419
14.4.5 Mechanism of the catalytic effects……Page 422
14.4.6 Destabilization……Page 423
14.5.1 Thermodynamic considerations……Page 424
14.5.2 Kinetic considerations……Page 426
14.5.4 Safety……Page 427
14.7 References……Page 428
15.2.1 Alkali borohydrides……Page 433
15.2.2 Alkaline-earth borohydrides, trivalent and tetravalent borohydrides……Page 436
Alkali borohydrides, MBH4 (M = Li, Na, K, Rb and Cs)……Page 438
Alkaline-earth borohydrides, M(BH4)2 (M = Be, Mg and Ca)……Page 439
Trivalent and tetravalent borohydrides, M(BH4)3 (M = Al) and M(BH4)4 (M = Zr and Hf)……Page 443
Alkali borohyrides, MBH4 (M = Li, Na, K, Rb and Cs)……Page 444
Alkaline-earth borohydrides, trivalent and tetravalent borohydrides, M(BH4)n (n………Page 446
Alkali borohydrides……Page 448
Alkaline-earth borohydrides……Page 451
Trivalent and tetravalent borohydrides……Page 452
15.4.2 Controlling thermodynamics……Page 453
15.4.3 Promoting kinetics……Page 456
15.7 References……Page 458
16.2 The lithium–nitrogen–hydrogen system……Page 463
16.2.1 Lithium nitride and hydrogen: a historical perspective……Page 464
16.2.2 Lithium imide and lithium amide……Page 466
16.2.3 Hydrogen storage in the Li–N–H system……Page 469
16.2.4 The effect of additives and particle size on hydrogen sorption……Page 473
16.3 The imides and amides of the group 2 elements……Page 477
16.4.1 The Li–Mg–N–H system……Page 479
16.4.2 The Li–Ca–N–H, Mg–Ca–N–H and Na–Mg–N–H systems……Page 484
16.5 Future trends and conclusions……Page 485
16.6 Acknowledgements……Page 486
16.7 References……Page 487
17.1 Introduction……Page 491
17.2 Thermodynamic destabilisation……Page 493
17.3 Complex hydride–metal hydride systems……Page 495
17.4 Complex hydride–non-hydride systems……Page 504
17.5 Complex hydride–complex hydride systems……Page 506
17.6 Other destabilisation multicomponent systems……Page 508
17.7 Future trends……Page 509
17.8 References……Page 510
18.1 Introduction……Page 513
18.2 Organic hydrides: chemistry and reactions for hydrogen storage and supply……Page 514
18.3 Spray-pulsed reactors for efficient hydrogen supply by organic hydrides……Page 519
18.4 Hydrogen storage and supply by organic hydrides……Page 525
18.5 Hydrogen delivery using organic hydrides for fuel-cell cars and domestic power systems……Page 531
18.6 High-density electric power delivery using organic hydride carriers……Page 534
18.7 Rechargeable direct fuel cells using organic hydrides……Page 536
18.8 Hydrogen delivery networks using organic hydrides……Page 541
18.9 References……Page 544
19.1 Introduction……Page 546
19.2 Indirect hydrogen storage in ammonia……Page 547
19.3 Compact storage in solid metal ammine materials……Page 550
19.4.1 Coordination complexes: a well-known class of materials……Page 554
19.4.3 Thermal release of ammonia……Page 558
19.4.4 Trends in metal ammine stabilities……Page 559
19.5 Nano- to macro-scale design of metal ammines……Page 561
19.5.1 Atomic structures and ab-/desorption pathways……Page 562
19.5.2 Diffusion and porosity……Page 563
19.5.3 Stabilities and binding energies……Page 564
19.6.1 From research project to real systems and applications……Page 566
Integrated fuel cell system……Page 567
Solid oxide fuel cell (SOFC)……Page 569
19.6.3 Ammonia decomposition……Page 570
19.6.4 Fuel supply: bulk production of storage materials……Page 572
19.6.5 Sources of further information and advice……Page 573
19.7 References……Page 574
20.1 Challenges in hydrogen applications……Page 578
20.2.1 Porous materials……Page 579
20.2.3 Ammines and liquid hydrides……Page 580
20.2.4 Metal hydrides……Page 581
20.4 References……Page 582

Reviews

There are no reviews yet.

Be the first to review “Solid-state Hydrogen Storage Materials and Chemistry”
Shopping Cart
Scroll to Top