Pipelines and Risers

Free Download

Authors:

Edition: 1st

ISBN: 008-042263-2, 008-042266-7, 008-042821-5, 008-042826-6

Size: 19 MB (19489472 bytes)

Pages: 521/521

File format:

Language:

Publishing Year:

Category:

Ed. by D. Vassalos et al.008-042263-2, 008-042266-7, 008-042821-5, 008-042826-6

Hardbound. A significant amount of research has been undertaken in Japan over the last forty years on the difficult problems of the stability of steel and steel-and-concrete composites structures and their components. Based on this research, Japanese design engineers, fabricators and contractors have built some of the most daring and innovative modern structures in recent times. The aim of this book is to present the essence of this research to researchers and design engineers worldwide in the hope that it will contribute to the international study of steel structures. The book focuses not only on theory and computation but also on experimental verification. It includes topics such as “Coupled Instability”, “Cyclic Buckling and Impact Strength” and “Database for Steel Structures” in which Japanese research has made particularly strong advances. The book commemorates the retirement of its editor and contributing author, Professor Fukumoto, from Osa

Table of contents :
Front Cover……Page 1
Pipelines and Risers……Page 4
Copyright Page……Page 5
Table of Contents……Page 12
Series Preface……Page 6
Foreword……Page 8
Preface……Page 10
1.2 Design Stages and Process……Page 24
1.3 Design Through Analysis (DTA)……Page 30
1.4 Pipeline Design Analysis……Page 32
1.5 Pipeline Simulator……Page 42
1.6 References……Page 45
2.1 General……Page 46
2.2 Material Grade Selection……Page 47
2.3 Pressure Containment (hoop stress) Design……Page 49
2.4 Equivalent Stress Criterion……Page 54
2.5 Hydrostatic Collapse……Page 55
2.6 Wall Thickness and Length Design for Buckle Arrestors……Page 57
2.7 Buckle Arrestor Spacing Design……Page 58
2.8 References……Page 59
3.1 General……Page 62
3.2 Pipe Capacity under Single Load……Page 63
3.3 Pipe Capacity under Couple Load……Page 70
3.4 Pipes under Pressure Axial Force and Bending……Page 72
3.5 Finite Element Model……Page 78
3.6 References……Page 84
4.1 Introduction……Page 86
4.2 Out of Roundness Serviceability Limit……Page 87
4.3 Bursting……Page 88
4.4 Local Buckling/Collapse……Page 90
4.5 Fracture……Page 93
4.6 Fatigue……Page 96
4.9 Accumulated Plastic Strain……Page 98
4.11 References……Page 99
5.2 Pipe Penetration in Soil……Page 102
5.3 Modeling Friction and Breakout Forces……Page 105
5.4 References……Page 106
6.3 Mathematical Formulations used in the Wave Simulators……Page 108
6.4 Steady Currents……Page 113
6.5 Hydrodynamic Forces……Page 114
6.6 References……Page 118
7.1 Introduction……Page 120
7.2 Description of the Finite Element Model……Page 121
7.3 Steps in an Analysis and Choice of Analysis Procedure……Page 124
7.4 Element Types used in the Model……Page 125
7.5 Non-linearity and Seabed Model……Page 127
7.7 References……Page 129
8.1 General……Page 132
8.3 Acceptance Criteria……Page 133
8.4 Special Purpose Program for Stability Analysis……Page 134
8.5 Use of FE Analysis for Intervention Design……Page 137
8.6 References……Page 139
9.1 General……Page 140
9.2 Free-span VIV Analysis Procedure……Page 142
9.3 Fatigue Design Criteria……Page 147
9.4 Response Amplitude……Page 148
9.5 Modal Analysis……Page 152
9.6 Example Cases……Page 154
9.7 References……Page 158
10.1 Introduction……Page 160
10.2 Fatigue Analysis……Page 161
10.3 Force Model……Page 167
10.4 Comparisons of Frequency Domain and Time Domain Approaches……Page 175
10.5 Conclusions and Recommendations……Page 176
10.6 References……Page 177
11.2 Trawl Gears……Page 178
11.3 Acceptance Criteria……Page 179
11.4 Impact Response Analysis……Page 180
11.5 Pullover Loads……Page 189
11.6 Finite Element Model for Pullover Response Analyses……Page 191
11.7 Case Study……Page 193
11.8 References……Page 198
12.1 Introduction……Page 200
12.2 Pipeline Installation Vessels……Page 201
12.3 Software OFFPIPE and Code Requirements……Page 208
12.4 Physical Background for Installation……Page 209
12.5 Finite Element Analysis Procedure for Installation of In-line Valves……Page 227
12.6 Two Medium Pipeline Design Concept……Page 232
12.7 References……Page 239
13.1 General……Page 242
13.2 Reliability-based Design……Page 243
13.3 Uncertainty Measures……Page 245
13.4 Calibration of Safety Factors……Page 246
13.5 Buckling/Collapse of Corroded Pipes……Page 247
13.7 References……Page 250
14.1 Introduction……Page 252
14.2 Review of Existing Criteria……Page 253
14.3 Development of New Criteria……Page 260
14.5 Reliability-based Design……Page 263
14.6 Example Applications……Page 269
14.8 References……Page 277
15.1 Introduction……Page 280
15.2 Fracture of Pipes with Longitudinal Cracks……Page 281
15.3 Fracture of Pipes with Circumferential Cracks……Page 285
15.4 Reliability-based Assessment and Calibration of Safety Factors……Page 286
15.5 Design Examples……Page 290
15.7 References……Page 297
16.1 Introduction……Page 300
16.2 Acceptance Criteria……Page 302
16.4 Cause Analysis……Page 306
16.5 Probability of Initiating Events……Page 307
16.6 Causes of Risks……Page 310
16.7 Consequence Analysis……Page 311
16.8 Example 1: Risk analysis for a Subsea Gas Pipeline……Page 315
16.9 Example 2: Dropped Object Risk Analysis……Page 321
16.10 References……Page 326
17.2 Pipeline Routing……Page 328
17.3 Pipeline Tie-ins……Page 330
17.4 Flowline Trenching/Burying……Page 338
17.5 Flowline Rockdumping……Page 342
17.7 References……Page 346
18.1 Operations……Page 348
18.2 Inspection by Intelligent Pigging……Page 353
18.3 Maintenance……Page 363
18.4 Pipeline Repair Methods……Page 365
18.5 Deepwater Pipeline Repair……Page 373
18.6 References……Page 375
19.1 Review of Usage of High Strength Steel Linepipes……Page 376
19.2 Potential Benefits and Disadvantages of High Strength Steel……Page 390
19.3 Welding of High Strength Linepipe……Page 394
19.4 Cathodic Protection……Page 397
19.5 Fatigue and Fracture of High Strength Steel……Page 398
19.6 Material Property Requirements……Page 399
19.7 References……Page 402
20.2 Descriptions of Riser System……Page 404
20.3 Metallic Catenary Riser for Deepwater Environments……Page 409
20.4 Stresses and Service Life of Flexible Pipes……Page 413
20.6 Riser Projects in Norway……Page 414
20.7 References……Page 415
21.1 Design Guidelines for Marine Riser Design……Page 416
21.2 Design Criteria for Deepwater Metallic Risers……Page 418
21.3 Limit State Design Criteria……Page 420
21.4 Design Conditions and Loads……Page 422
21.5 Improving Design Codes and Guidelines……Page 427
21.6 Comparison of lSO and API Codes with Hauch and Bai (1999)……Page 429
21.7 References……Page 434
22.2 Fatigue Causes……Page 436
22.3 Riser VIV Analysis Program……Page 441
22.4 Flexible Riser Analysis Program……Page 442
22.5 Vortex-induced Vibration Prediction……Page 444
22.6 Fatigue Life……Page 445
22.8 Fatigue of Deepwater Metallic Risers……Page 446
22.9 References……Page 453
23.2 Design Criteria……Page 456
23.3 Load Cases……Page 459
23.4 Finite Element Models……Page 460
23.5 References……Page 462
24.2 Pipe-in-Pipe System……Page 464
24.3 Bundle System……Page 474
24.4 References……Page 488
25.1 Introduction……Page 490
25.2 Initial Cost……Page 492
25.3 Financial Risk……Page 495
25.4 Time value of Money……Page 498
25.5 Fabrication Tolerance Example Using the Life-Cycle Cost Model……Page 499
25.6 On-Bottom Stability Example……Page 508
25.7 References……Page 510
26.2 Åsgard Flowlines Project……Page 512
26.3 Åsgard Transport Project……Page 515
26.4 References……Page 518
Subject Index……Page 520

Reviews

There are no reviews yet.

Be the first to review “Pipelines and Risers”
Shopping Cart
Scroll to Top