Abdelhamid Sayari, Mietek Jaroniec978-981-277-915-1, 9812779159
Table of contents :
2. Si-Containing Mesoporous Inorganic Frameworks……Page 8
PREFACE……Page 6
1. Introduction……Page 18
2.1. Strongly Acidic and Hydrothermally Stable Ordered Mesoporous Aluminosilicates from Preformed Aluminosilicate Zeolite Precursors……Page 19
2.2. Catalytically Active and Hydrothermally Stable Ordered Mesoporous Titanosilicates from Preformed Titanosilicate Precursors……Page 20
2.3. High-temperature Synthesis of Hydrothermally Stable Ordered Mesoporous Silica-based Materials with High Silica Condensation……Page 21
3. Mesoporous Zeolites Templated with a Mixture of Small Organic Ammonium and Mesoscale Cationic Polymer……Page 22
References……Page 24
1. Introduction……Page 26
2.2. Synthesis of SBA-15 by vacuum-assisted solvent evaporation (VASE) method……Page 27
3.1. Characterization of SBA-15……Page 28
3.2. Porous structure of SBA-15……Page 30
3.3. Comparison with conventional SBA-I5……Page 31
4. Conclusions……Page 32
References……Page 33
1. Introduction……Page 34
2.2. Mesoporous materials preparation and characterization……Page 35
3.1. The R (EO) Water binary system……Page 36
3.2. Effect of sodium iodide addition……Page 37
3.3. Effect of RHls(EO),, addition……Page 40
3.4. Discussion……Page 41
References……Page 43
1. Introduction……Page 44
2.2. Synthesis of mesoporous silica microspheres……Page 46
3.1. Particle size control……Page 47
3.2. Pore Size Expansion……Page 48
3.3. Chromatography……Page 51
References……Page 52
1. Introduction……Page 54
2. Experimental Section……Page 56
3. Results and Discussion……Page 58
References……Page 62
1. Introduction……Page 64
2. Experimental Section……Page 65
3. Results and Discussion……Page 66
4. Conclusions……Page 70
References……Page 71
1. Introduction……Page 72
2. Experimental……Page 73
3. Results and Discussion……Page 75
References……Page 79
1. Introduction……Page 80
2. Experimental……Page 82
3.1. Characterization of Ge-substituted imogolite……Page 83
3.2. Thermal transformation of Ge-substituted imogolite……Page 84
References……Page 87
4. Mesoporous Organosilicas……Page 9
1. Introduction……Page 88
2. Experimental……Page 89
3. Results and Discussions……Page 90
References……Page 94
1. Introduction……Page 96
2.1. Synthesis procedure……Page 97
2.3. The Zsomerization and Cracking of Hexane……Page 98
3. Results and Discussion……Page 99
4. Conclusion……Page 104
References……Page 105
1. Introduction……Page 106
2.1. Samples Preparation……Page 107
3. Results and discussion……Page 108
References……Page 114
1. Introduction……Page 116
2. Experimental……Page 117
3. Results and discussion……Page 118
References……Page 124
1. Introduction……Page 126
2.2. Synthesis of azobenzene-bridged organosilica……Page 127
3. Results and discussion……Page 128
References……Page 133
1. Introduction……Page 134
2.1. Chemicals……Page 135
2.4. Preparation of ethenylene-bridgedperiodic mesoporous organosilicas……Page 136
2.7. Characterization……Page 137
3.1. Diasterioselectivepure ethenylene-bridged PMOs: role of catalyst……Page 138
3.2. Optimization of the template extraction procedure……Page 139
3.3. Ultra-fast hydrothermal synthesis of ethenylene-bridged PMOs……Page 140
3.4. Control of morphology: Influence of co-solvent……Page 142
3.5. Chemical accessibility of the ethene-functions: Bromination……Page 143
References……Page 144
1. Introduction……Page 146
2.1. Material preparation……Page 147
3.1. Structural and textural characterization……Page 148
3.2. Stability in aqueous medium……Page 153
4. Conclusion……Page 154
References……Page 155
1. Introduction……Page 156
2.2. Synthesis of Free-Standing PMO Films with Crystal-Like Pore Walls……Page 157
3. Results and discussion……Page 158
4. Conclusions……Page 163
References……Page 164
1. Introduction……Page 166
2. Measurements……Page 169
3. Results and Discussion……Page 170
4. Conclusions……Page 173
References……Page 174
1. Introduction……Page 176
2.1. Synthesis of functionalized mesoporous silicas……Page 177
2.2. Characterization……Page 178
3. Results and Discussion……Page 179
Acknowledgments……Page 184
References……Page 185
5. Non-siliceous Inorganic Nanomaterials……Page 10
1. Introduction……Page 186
2.3. Characterization……Page 187
3.1. Ce02 Replicated from SBA-15 Silica……Page 188
Conclusions……Page 193
References……Page 194
1. Introduction……Page 196
2.2. Preparation of Vdi/MCM-41 by template exchange method……Page 197
3. Results and Discussion……Page 198
References……Page 203
1. Introduction……Page 204
2.1. Synthesis and Characterization of Mesoporous Metal Oxides……Page 205
3. Results and Discussion……Page 206
References……Page 211
1. Introduction……Page 212
2.2 Characterization……Page 213
3. Results and discussions……Page 214
References……Page 219
1. Introduction……Page 220
2.1. Catalyst Preparation……Page 221
2.4. Photocatalysis……Page 222
3.1. Crystalline Niobia Formation……Page 223
3.2. Catalytic and Photocatalytic Activity……Page 227
References……Page 228
6. Porous Polymers and Polymer/Inorganic Nanocomposites……Page 11
1. Introduction……Page 230
2. Cyclic Peptides……Page 231
3.1. Dipeptides – Hydrophobic Channels. Biozeolites……Page 232
3.2. Dipeptides – Hydrophilic Channels……Page 234
3.3. Layered Structures……Page 236
4. Bonding Softness in Peptide Frameworks……Page 238
References and Notes……Page 239
1. Introduction……Page 242
2.1. Materials……Page 243
2.4. Sample processing and alignment of block copolymers……Page 244
3.1. Synthesis of the block copolymer precursors……Page 245
3.2. Morphology of the block copolymer precursors……Page 246
3.3. Preparation of porous polymeric materials……Page 247
4. Conclusions……Page 249
References……Page 250
1. Introduction……Page 252
2. Experimental……Page 253
3. Results and Discussion……Page 255
Acknowledgments……Page 260
References……Page 261
1. Introduction……Page 262
2.1. Synthesis of Samples……Page 263
3. Results and Discussion……Page 264
References……Page 270
1. Introduction……Page 272
2.1. Materials and Syntheses of Samples……Page 273
3. Results and Discussion……Page 274
References……Page 281
1. Introduction……Page 282
2.1. Materials and synthesis……Page 283
3. Results and Discussion……Page 284
4. Conclusion……Page 290
References……Page 291
7. Mesoporous Carbons……Page 12
1. Introduction……Page 292
2.2. Preparation of carbon replica……Page 294
2.3. Characterizations……Page 295
3.1. Preparation of Silica spheres……Page 296
3.2. Preparation of carbon replica……Page 297
Acknowledgments……Page 298
References……Page 299
1. Introduction……Page 300
2.1. Material Synthesis……Page 301
3. Results and discussion……Page 302
References……Page 308
1. Introduction……Page 310
2.1. Material Synthesis……Page 311
3.1. Mesoporous carbons prepared via liquid impregnation……Page 312
3.2. Mesoporous carbons prepared via chemical vapor deposition……Page 316
References……Page 319
1. Introduction……Page 320
2. Experimental Section……Page 322
3. Results and Discussion……Page 323
4. Conclusions……Page 327
References……Page 328
1. Introduction……Page 330
2.3 Oxidation Treatment with APS……Page 331
2.6 Covalent Functionalization of Methionine (MET)……Page 332
3. Results and Discussion……Page 333
4. Conclusions……Page 337
References……Page 338
1. Introduction……Page 340
2.1. Synthesis of template and OMC materials……Page 341
2.3. Characterization……Page 342
3. Results and Discussion……Page 343
4. Conclusion……Page 347
References……Page 348
1. Introduction……Page 350
2.1. Synthesis of SBA-I5 and Carbon Materials……Page 353
3.1. XRD Studies……Page 354
3.2. Nitrogen Adsorption……Page 355
3.3. Thermogravimetric and CHNS Elemental Analysis……Page 360
References……Page 362
1. Introduction……Page 364
2.4. PALS……Page 366
3. Results and Discussion……Page 367
4. Conclusions……Page 370
References……Page 371
1. Introduction……Page 372
2.1. Sample preparation……Page 373
2.2. Characterization……Page 374
3.1. Scanning electron microscopy……Page 375
3.3. Nitrogen physisorption……Page 376
3.4. Electrochemistry……Page 378
References……Page 380
1. Introduction……Page 382
2.2. Electrochemistty……Page 384
2.3. Surface Area and Nitrogen Sorption Analysis……Page 385
3.1. Morphology, feature production & measurements……Page 386
3.2. Electrochemical analysis using potentiostatic and galvanostatic measurements……Page 388
3.3. Electrochemical analysis using impedance measurements, complex capacitance and complex power……Page 389
4. Conclusions……Page 392
References……Page 393
9. Adsorption on Nanostructured Materials……Page 13
1. Introduction……Page 394
2. Experimental……Page 395
3. Results and Discussion……Page 397
References……Page 401
1. Introduction……Page 402
2. Results and Discussion……Page 403
3. Applications……Page 406
References……Page 410
1. Introduction……Page 412
2. Amine-Modified Nanoporous Colloidal Films……Page 414
3. Light Responsive Nanoporous Colloidal Films……Page 416
4. Polymer Modified Colloidal Films……Page 418
References……Page 421
1. Introduction……Page 424
2.1. Water model……Page 426
2.2. Solid model and functional group……Page 427
2.3. Simulation method……Page 428
3.1. The effects ofpore length on the adsorption isotherm……Page 430
3.2. The effects of functionalgroup on the adsorption isotherm……Page 433
3.3. The effects of concentration of functional group on the isotherm……Page 436
References……Page 437
1. Introduction……Page 440
2. Methodology……Page 441
3. Results and Discussion……Page 442
3.1 Comparison of the QM model to the QMMM model……Page 443
3.2 The adsorption ofethylene with the clusters……Page 444
3.3 Comparison between the adsorptions of ethylene and methane with the clusters……Page 445
Acknowledgements……Page 446
References……Page 447
1. Introduction……Page 448
2. Methodology……Page 449
3.1. The effect of the cluster size on the adsorption of methane……Page 451
3.2. Methane adsorption on IRMOF-2 and IRMOF-6……Page 452
4. Conclusions……Page 454
References……Page 455
1. Introduction……Page 456
2. Computational Details……Page 457
3. Results and Discussion……Page 458
4. Conclusions……Page 460
References……Page 461
1. Introduction……Page 462
2. Experimental……Page 463
3.1. Differential thermal analysis (DTA)……Page 464
3.2. Temperature dependence of solid-state ‘H wide-line NMR spectrum……Page 467
3.3. Intermolecular interaction of guests in IRMOF-1……Page 469
4. Conclusion……Page 471
References……Page 472
10. Nanostructured Catalysts……Page 14
1. Introduction……Page 474
2.1. Sulfonic acid functionalized powders……Page 475
2.2. Alurninosilicatepowders……Page 476
3.1. Sulfonic acid functiondized mesoporous silica nanospheres……Page 477
3.1.1. Synthesis with post-sulfonation or post-oxidation……Page 478
3.1.2. Direct synthesis……Page 481
3.2. Aluminosilicate mesoporous nanospheres……Page 482
4. Conclusions……Page 490
References……Page 491
1. Introduction……Page 494
2.1. Catalysts……Page 495
2.3. Characterization of catalysts……Page 496
3.1. Characterization……Page 497
3.2.1. Acylation offerrocene……Page 498
3.2.2. Acylation of toluene……Page 500
4. Conclusions……Page 501
Acknowledgments……Page 502
References……Page 503
1. Introduction……Page 504
2. Experimental……Page 505
3.1. Dispersion and Redox Conversion of hW03 Supported on A1203 ;:piz……Page 506
3.2. Basicity Generated through Redox Approach on KNA Composites……Page 507
3.3. Retain of Pore Size and Suppression of NOx……Page 509
4. Discussion……Page 511
5. Conclusions……Page 512
References……Page 513
1. Functional Nanostructured and Mesostructured Materials……Page 514
2.1. Synthesis of the Functionalized Mesoporous Materials with Site-Zsolated Groups……Page 516
2.3. Henry (Nitroaldol Condensation) Reaction……Page 517
3.1. Synthesis and Characterization of the Materials……Page 518
References……Page 524
1. Introduction……Page 526
2. Experimental……Page 527
3. Results and Discussion……Page 528
4. Conclusions……Page 533
References……Page 534
1. Introduction……Page 536
2.1 Preparation of Iron Oxide Nanoparticles over Mesoporous Supports……Page 537
3. Results and Discussion……Page 538
References……Page 544
1. Introduction……Page 546
2. Au/Mesoporous SiOz: Initial Attempts……Page 547
3. AulTi02iMesoporous SiOl……Page 550
4. AuIMesoporous TiO2-SiOz……Page 551
5. Au/Mesoporous SiO2 Revisited……Page 552
6. Au/MnOx/Mesoporous Carbon……Page 555
References……Page 557
1. Introduction……Page 560
2.2. Preparation of Mesoporous Oxide Thin Films……Page 561
2.4. Instrumentations……Page 562
3. Results and Discussion……Page 563
4. Conclusions……Page 568
References……Page 569
11. Catalytic Applications of Nanoporous Materials……Page 15
1. Introduction……Page 570
2.1. Preparation……Page 571
2.3. Photocatalysis……Page 572
3.1. Morphological and structure properties of mesoporous films……Page 573
3.2. Photocatalytic activity……Page 575
4. Conclusions……Page 576
References……Page 577
1. Introduction……Page 578
2.1. Catalyst Preparation……Page 579
3.1. The Influence of Metal Precursors……Page 580
3.3. The Influence of Base as Additive……Page 581
3.4. The Influence of Reaction Temperature and Period……Page 582
3.5. Leaching experiment……Page 583
3.6. Terminal alkynes with aryl halides……Page 584
3.7. Recycling of Pd-2QC-MCM-41 catalyst……Page 586
References……Page 587
1. Introduction……Page 588
2. Experimental……Page 589
3. Results and Discussion……Page 590
References……Page 593
1. Introduction……Page 594
2.2. Catalyst characterization……Page 596
3.1. Catalysts characterization……Page 597
References……Page 604
1. Introduction……Page 606
2.1. Preparation of the catalysts……Page 607
3. Results and Discussion……Page 609
4. Conclusions……Page 614
References……Page 615
1. Introduction……Page 616
2.1. Synthesis of beta zeolites seeds and mesostructuring……Page 617
2.3. Catalytic evaluation……Page 618
3. Results and discussion……Page 619
4. Conclusions……Page 622
References……Page 623
1. Introduction……Page 624
2. Experimental……Page 626
3. Results and Discussion……Page 627
Reference……Page 632
1. Introduction……Page 634
2. Experimental……Page 635
3. Results and Discussion……Page 636
4. Conclusions……Page 640
References……Page 641
12. Environmental Applications of Nanoporous Materials……Page 16
1. Introduction……Page 642
2.1. Materkk……Page 643
3. Results and Discussion……Page 644
References……Page 649
1. Introduction……Page 650
2.1. Synthesis of Materials……Page 652
2.3. Heat of adsorption……Page 653
2.4. Adsorption capacity in dynamic processes……Page 654
3.1 Characterization……Page 655
3.2 Heat of adsorption……Page 656
References……Page 658
1. Introduction……Page 660
2. Experimental……Page 661
3. Results and discussion……Page 663
4. Conclusions……Page 667
References……Page 668
1. Introduction……Page 670
2. Experimental……Page 671
3.1. Impact of Micropores in Mesoporous Silica on Adsorption of Volatile Nitrosamines……Page 672
3.2. Enhancement of Liquid Adsorption of Nitrosamines by Micropores Present in Mesoporous Silica……Page 675
3.3. Impact of Micropores on Modification of Mesoporous Silica with CuO and the Adsorption of NDPA in Solution……Page 677
Acknowledgments……Page 679
References……Page 680
Application of Mesoporous Organosilicas with Sulfur- and Nitrogen- Containing Ligands for Adsorption of Mercury Ions Rafal M. Grudzien, Bogna E. Grabicka, Oksana Olkhovyk, Mietek Jaroniec and Jonathan P. Blitz……Page 682
1. Introduction……Page 683
2.2. Synthesis of OMSs and PMOs……Page 684
2.4. Other Measurements……Page 685
3. Results and Discussion……Page 687
4. Conclusions……Page 691
References……Page 692
1. Introduction……Page 694
2.2. Measurements……Page 695
3.1. Effectiveness of leaching process……Page 697
3.2. X-Ray Diffraction……Page 698
3.4. Scanning Electron Micrography……Page 699
3.5. Solid-State NMR Spectroscopy……Page 700
References……Page 702
13. Bio-related Applications of Mesoporous Materials……Page 17
1. Introduction……Page 704
2.1. Preparation of FSM-22 and SBA-15……Page 705
2.3. Preparation of lipase-trypsin-mesoporous material conjugate……Page 706
2.5. Microscopic observation by epi-fluorescence and differential interference contrast……Page 707
3.1. Characterization of calcined mesoporous materials……Page 708
3.2. Adsorbed amount of the enzymes incorporated into mesoporous materials……Page 709
3.3. Direct observation of two enzyme-mesoporous materials……Page 711
4. Conclusions……Page 712
References……Page 713
1. Introduction……Page 714
2.3. Urease Adsorption……Page 716
3. Results and Discussion……Page 717
4. Conclusion……Page 723
References……Page 724
1. Introduction……Page 726
2 2. Adsorption……Page 727
3.1. Structural and textural features……Page 728
3.2. Evidence of GOD incorporation and evaluation of the quantity of GOD really immobilized in the silica network……Page 729
3.3. Activiq of the immobilized GOD……Page 732
References……Page 733
1. Introduction……Page 734
2.1. Preparation of ampicillin -containing hydrotalcite -like compounds……Page 735
2.2. Characterization of the ampicillin -containing solids……Page 736
3.1. Chemical analysis……Page 737
3.2. XRD analysis……Page 738
3.3. DRIFT analysis……Page 739
3.4. DR-UV-VIS analysis……Page 740
3.6. Therm ogravim etric analysis……Page 741
References……Page 744
Author Index……Page 746
Subject Index……Page 752
Reviews
There are no reviews yet.