G. H. Michler, F. J. Baltá-Calleja9781574447712, 1-57444-771-8
Table of contents :
Mechanical Properties of Polymers Based on Nanostructure and Morphology……Page 1
PLASTICS ENGINEERING……Page 3
Preface……Page 8
Acknowledgment……Page 12
The Editors……Page 13
Contributors……Page 16
Contents……Page 19
Contents……Page 0
Part I Structural and Morphological Characterization……Page 22
CONTENTS……Page 23
II. CRYSTALLINE POLYMERS……Page 24
III. POLYMER LAMELLAE……Page 26
IV. SPHERULITES……Page 34
V. BANDED SPHERULITES……Page 37
VI. CRYSTALLIZATION UNDER STRESS OR FLOW……Page 39
VII. FUTURE CHALLENGES……Page 41
REFERENCES……Page 42
CONTENTS……Page 46
I. INTRODUCTION……Page 47
A. Combined Synchrotron SAXS and WAXD Techniques……Page 48
B. In Situ X-ray Shear Apparatus……Page 50
III. FLOW-INDUCED CRYSTALLIZATION IN POLYMER MELTS……Page 52
A. Flow-Induced Shish-Kebab Precursor Structures of Isotactic Polypropylene Near Nominal Melting Point……Page 54
1. SAXS Observation……Page 55
2. WAXD Observation……Page 57
3. Crystalline Fractions in Shish and Kebab Structures……Page 58
4. Possible Pathways for Development of Shish-Kebab Crystallization Precursor Structures……Page 60
1. SAXS Observation……Page 62
2. WAXD Observation……Page 64
C. Concept of Critical Orientation Molecular Weight in Flow- Induced Crystallization of iPP……Page 68
D. Verification of Flow-Induced Precursor Structures in Bimodal Polyethylene Blends……Page 70
A. Deformation of Semicrystalline iPP……Page 73
B. Deformation of the Isotropic Amorphous PET……Page 77
1. Strain-Induced Phase Transition and Structural Development below Tg……Page 80
2. Structural Development above Tg……Page 86
REFERENCES……Page 90
CONTENTS……Page 99
I. INTRODUCTION……Page 100
A. Mechanical Behavior and Morphology Control……Page 102
B. Architectural Modification of Block Copolymers……Page 108
A. Materials and Sample Preparation……Page 112
B. Techniques……Page 114
A. Block Copolymer Morphologies as Revealed by AFM and TEM……Page 115
B. SAXS Results……Page 119
C. Molecular Mobility and Mechanical Properties……Page 121
D. Nanostructure of Binary Blends of Block Copolymers……Page 127
E. Block Copolymer/Homopolymer Blends……Page 130
F. Influence of Processing Conditions on Nanostructure……Page 134
V. SUMMARY AND OUTLOOK……Page 136
ACKNOWLEDGMENTS……Page 138
REFERENCES……Page 139
Part II Deformation Mechanisms at Nanoscopic Level……Page 146
CONTENTS……Page 147
I. INTRODUCTION……Page 148
II. COMPETITION BETWEEN ELASTIC EXTENSION, SHEAR AND CAVITATION……Page 149
III. NUCLEATION OF VOIDS AND CRAZES IN ENTANGLEMENT NETWORKS……Page 154
IV. CRAZE GROWTH AND TOUGHNESS……Page 157
V. THE EFFECT OF TEMPERATURE ON CRAZE INITIATION MECHANISMS……Page 160
VI. MOLECULAR CHARACTERISTICS OF THE INVESTIGATED SEMI- AROMATIC POLYAMIDES……Page 164
A. Toughness Testing……Page 166
B. Effect of Chain Length and Molecular Composition……Page 167
ACKNOWLEDGMENTS……Page 171
REFERENCES……Page 172
CONTENTS……Page 175
I. INTRODUCTION……Page 176
II. CAVITATION DURING PLASTIC DEFORMATION OF POLYMERS……Page 180
III. DEFORMATION MECHANISMS IN CRYSTALLINE POLYMERS……Page 186
IV. PLASTICITY OF POLYMER CRYSTALS……Page 195
V. STRENGTH OF CRYSTALLINE POLYMERS……Page 201
VI. CAVITY-FREE DEFORMATION……Page 208
VII. ROLLING WITH SIDE CONSTRAINTS……Page 210
A. Case of Isotactic Polypropylene (iPP)……Page 212
B. Case of High-Density Polyethylene (HDPE)……Page 215
VIII. CONCLUSIONS……Page 216
ACKNOWLEDGMENTS……Page 218
REFERENCES……Page 219
CONTENTS……Page 230
I. INTRODUCTION……Page 231
II. MICROMECHANISMS OF FRACTURE IN SEMICRYSTALLINE POLYMERS……Page 232
III. CRACK TIP MICRODEFORMATION……Page 242
IV. WEDGE TESTING AND INTERFACIAL FAILURE……Page 249
REFERENCES……Page 254
CONTENTS……Page 260
I. INTRODUCTION……Page 261
A. Influence of Chain Architecture: Branching……Page 263
B. Influence of Molecular Weight……Page 264
B. Techniques for the Analysis of Deformation Structures……Page 265
A. Morphology: General Features……Page 268
B. Influence of the Molecular Weight on the Micromechanical Mechanisms……Page 271
C. Influence of Crystal Polymorphism on Micromechanical Mechanisms……Page 274
D. Influence of the Deformation Temperature……Page 283
V. MECHANICAL BEHAVIOR AND MICROMECHANICAL DEFORMATION MECHANISMS IN POLYOLEFINS: COMPARISON OF RESULTS……Page 287
VI. SUMMARY AND CONCLUSIONS……Page 288
ACKNOWLEDGMENTS……Page 290
REFERENCES……Page 291
CONTENTS……Page 294
I. INTRODUCTION……Page 295
II. BASIC ASPECTS OF MICRO-INDENTATION: CONTACT GEOMETRY……Page 297
III. STRUCTURE DEVELOPMENT IN POLYMER GLASSES: INFLUENCE OF TEMPERATURE AND TIME OF CRYSTALLIZATION……Page 299
IV. DEPENDENCE OF MICROHARDNESS ON NANOSTRUCTURE OF SEMICRYSTALLINE POLYMERS: MECHANISMS OF DEFORMATION……Page 304
V. STUDY OF POLYMORPHISM IN POLYMERS BY MICROHARDNESS……Page 310
VI. APPLICATION TO POLYMER COMPOSITES……Page 311
VII. STRUCTURAL FEATURES OF BLOCK COPOLYMERS: INFLUENCE OF COMPOSITION, STRUCTURE AND PHYSICAL AGING……Page 313
VIII. MICROHARDNESS: MORPHOLOGY CORRELATIONS IN BLENDS OF GLASSY POLYMERS……Page 315
IX. OUTLOOK……Page 319
REFERENCES……Page 321
CONTENTS……Page 331
I. INTRODUCTION……Page 332
A. Toughening Mechanism……Page 334
B. Modeling Strategy……Page 336
II. SOFT FILLERS: CAN LOCAL ANISOTROPY INDUCE TOUGHNESS?……Page 339
A. Constitutive Model of the Anisotropic Bulk Polymer……Page 340
1. The First Model: An Axisymmetric RVE, the SA Model……Page 342
2. The Second Model: A Multiparticle Plane Strain RVE, the ID Model……Page 344
C. Results……Page 346
D. Failure Mechanisms……Page 348
E. Conclusions……Page 351
III. HARD PARTICLES: CAN THEY ALSO ACT AS TOUGHNESS MODIFIERS?……Page 353
B. Results……Page 354
C. Conclusions……Page 358
IV. FULL MULTISCALE MODELING: WHAT DID WE LEARN?……Page 359
1. Crystalline Phase……Page 360
2. Amorphous Phase……Page 361
B. Mesoscopic Scale: Composite Inclusion Model……Page 362
1. Anisotropy of Preferentially Oriented Material……Page 363
C. Macroscopic Models……Page 366
D. Effect of Transcrystallized Anisotropy on Toughness……Page 367
E. Influence of Processing Conditions……Page 375
F. Conclusions……Page 380
V. DISCUSSION……Page 381
ACKNOWLEDGMENTS……Page 385
REFERENCES……Page 386
CONTENTS……Page 393
I. INTRODUCTION……Page 395
C. Study of Micromechanical Properties……Page 397
D. Determination of Mechanical Properties……Page 398
B. Rubber Particle Toughening……Page 399
C. Rubber Network Toughening……Page 402
D. Inclusion Yielding……Page 405
E. Particle-Filled Polymers (Composites)……Page 406
H. Thin Layer Yielding Mechanisms……Page 409
2. Toughening Mechanism in General……Page 410
3. Advantages of Core-Shell Particles……Page 412
1. Materials Used……Page 416
2. Deformation Mechanism……Page 417
2. Deformation Mechanism and Effect of Thin Layer Yielding……Page 419
3. Influence of Processing Conditions and Deformation Temperature……Page 425
4. Comparison with Other Lamellae- Forming Polymers……Page 428
1. Materials Used……Page 429
2. Deformation Mechanisms……Page 430
1. Materials and Sample Preparation……Page 433
2. Deformation Mechanisms……Page 434
V. CONCLUSIONS/OUTLOOK……Page 437
REFERENCES……Page 441
Part III Mechanical Properties Improvement and Fracture Behavior……Page 447
CONTENTS……Page 448
I. INTRODUCTION……Page 449
A. Glass Transition Temperature of the Rubbery Phase……Page 453
1. Adhesion……Page 455
2. Agglomeration……Page 457
1. Pseudo-Ductile Homopolymers……Page 465
2. Brittle Homopolymers……Page 469
3. Semi-Brittle Homopolymers……Page 480
D. Structure of the Rubber Particles……Page 484
E. Voiding of Rubber Particles……Page 486
1. Cross-Linking……Page 487
2. Addition of Oil……Page 492
III. SUMMARY……Page 494
REFERENCES……Page 495
CONTENTS……Page 499
I. INTRODUCTION……Page 500
A. Multiple Crazing……Page 501
B. Multiple Shear Yielding……Page 505
C. Intrinsic Brittle/Ductile Behavior……Page 508
D. Deformation and Fracture of Polymer Blends……Page 510
1. Multiple Shear Yielding in Toughened Polymers……Page 511
2. Effect of Rubber Concentration……Page 512
3. Role of Particle Size of the Rubber Phase……Page 513
III. TOUGHENING OF SEMICRYSTALLINE POLYMERS USING RUBBER AND RIGID FILLERS……Page 517
A. Thermoplastic Polyesters……Page 518
B. Polyamides……Page 529
C. Polyolefins……Page 541
IV. GENERAL CONCLUSIONS AND FUTURE OUTLOOK……Page 547
REFERENCES……Page 550
CONTENTS……Page 565
I. INTRODUCTION……Page 566
II. MANUFACTURING OF NANOCOMPOSITES……Page 568
A. Intercalation in 2-D and 3-D Structures……Page 569
B. Use of Preformed Nanoparticles……Page 570
1. In situ Polymerization……Page 571
3. Melt Compounding……Page 573
A. Particle Dispersion……Page 579
B. Matrix Polymer (Bulk)……Page 581
C. Interphase……Page 583
D. Effects of Processing……Page 585
1. Stiffness and Ultimate Properties for 2-D Intercalated Nanocomposites……Page 587
2. Stiffness and Ultimate Properties of Nanocomposites with Preformed Quasi-Spherical Particles……Page 589
3. Creep and Fatigue Behavior……Page 590
4. Toughness……Page 592
B. Thermal Behavior……Page 596
C. Rheological Behavior……Page 597
D. Barrier Properties……Page 598
E. Fire Retardant Properties……Page 599
ACKNOWLEDGMENTS……Page 601
REFERENCES……Page 602
CONTENTS……Page 615
I. INTRODUCTION……Page 616
II. CARBON NANOTUBES AND NANOFIBERS……Page 617
A. Production……Page 620
B. Properties……Page 622
III. POLYMER NANOCOMPOSITES CONTAINING CARBON NANOTUBES/ NANOFIBERS……Page 624
IV. CONCLUSIONS……Page 632
REFERENCES……Page 634
CONTENTS……Page 641
I. INTRODUCTION……Page 642
II. MICROLAYER COEXTRUSION TECHNOLOGY……Page 643
III. MICROLAYERED POLYMERS……Page 646
1. PC/SAN Microlayers……Page 648
2. Comparison between PC/SAN and PC/PMMA Systems……Page 652
B. Microlayers as Model Systems to Study Adhesion……Page 656
1. Delamination Toughness and Mechanism in PC/SAN Microlayers……Page 657
2. Effect of Compatibilizer on Adhesion of Polypropylene (PP) and Polyamide (PA)……Page 659
3. Evaluating Ethylene-Styrene Copolymers as Compatibilizers for Polyethylene and Polystyrene Blends……Page 660
4. Effect of Chain Microstructure on Adhesion of Polyethylene to Polypropylene……Page 661
C. Foam/Film Microlayers Û A Novel Way of Controlling Foam Cell Structure……Page 662
1. Morphology and Deformation Behavior……Page 668
2. Microhardness……Page 671
B. Tunable Optical Properties of an Elastomer/ Elastomer Nanolayered System……Page 674
C. Physical Properties of Interphase Materials……Page 676
D. Novel Structures Produced by Confined Crystallization in Nanolayers……Page 682
REFERENCES……Page 690
CONTENTS……Page 694
I. INTRODUCTION……Page 695
A. Polyethylene……Page 697
B. Polypropylene……Page 710
1. Polyethylene Terephthalate (PET)……Page 715
2. Polyethylene Naphthalate……Page 721
D. Nylon 66……Page 723
1. Polyphenylene Sulphide (PPS)……Page 725
2. Polyetheretherketone (PEEK)……Page 726
III. CONCLUSIONS……Page 727
ACKNOWLEDGMENTS……Page 732
REFERENCES……Page 733
Reviews
There are no reviews yet.