Raouf A. Ibrahim0521838851, 9780521838856
Table of contents :
Cover……Page 1
Half-title……Page 3
Title……Page 5
Copyright……Page 6
Contents……Page 7
Foreword……Page 14
Acknowledgment……Page 16
Introduction……Page 18
Part I Linear sloshing dynamics……Page 25
1.1 Introduction……Page 27
1.2 Fluid field equations……Page 29
1.3 Variational formulation……Page 33
1.4.1 Bare wall cylindrical tank……Page 36
1.4.2 Cylindrical tank with ring baffles……Page 40
1.4.3 Annular tank……Page 41
1.4.4 Cylindrical quarter tank……Page 42
Sector walls perforation effect……Page 43
1.5 Normal modes in a rectangular container……Page 44
1.6.1 Canal with 45°-straight walls……Page 47
1.6.2 Horizontal cylindrical and spherical containers……Page 49
Horizontal cylinder……Page 50
Spherical container……Page 61
1.6.3 Prolate spheroidal tank……Page 70
1.6.4 Oblate spheroidal tank……Page 77
First mode analysis……Page 80
Variational approach……Page 84
Transformation to conical spherical coordinates……Page 87
1.6.6 Toroidal containers……Page 90
Horizontal modes……Page 91
Vertical modes……Page 92
1.6.7 Upright elliptic containers……Page 96
1.6.8 Paraboloid container……Page 98
Sectional truncated paraboloid tank……Page 100
Sectional paraboloid annular sector tank……Page 102
Paraboloid sector tank……Page 103
1.7 Closing remarks……Page 104
A1.1 Curvilinear coordinates……Page 105
A1.3 Spherical coordinates……Page 106
A1.4 Prolate spheroidal coordinates……Page 107
A1.6 Bipolar coordinates………Page 108
A1.7 Toroidal coordinates………Page 111
2.1 Introduction……Page 112
2.2 Upright cylindrical containers……Page 113
2.2.1 Lateral excitation……Page 114
2.2.2 Pitching excitation……Page 121
2.3.1 Lateral excitation……Page 126
2.3.2 Pitching excitation……Page 130
2.3.3 Roll excitation……Page 133
2.4.1 Lateral excitation……Page 139
2.4.2 Pitching excitation……Page 143
2.4.3 Roll excitation……Page 145
2.5.1 Lateral excitation……Page 151
2.5.2 Pitching excitation……Page 153
2.6.1 Lateral excitation……Page 154
2.6.2 Pitching excitation……Page 158
2.6.3 Roll excitation……Page 159
2.7 Spherical containers……Page 161
2.8 Prolate and oblate spheroidal containers……Page 164
2.9 Conical containers……Page 169
2.10 Paraboloid containers……Page 172
2.11 Sloshing of magnetic fluids……Page 175
2.12 Closing remarks……Page 178
3.1 Introduction……Page 180
3.2.1 Damping in a circular cylindrical container……Page 183
3.2.2 Damping in other containers……Page 189
3.3.1 Modal analysis of viscous fluids……Page 191
3.3.2 Lateral excitation of viscous fluids……Page 197
3.4 Suppression devices……Page 202
Flat ring baffles……Page 203
Flexible ring baffles……Page 207
Experimental measurements of flat annular ring baffles……Page 209
Conical baffles……Page 212
Radial baffles……Page 213
Expulsion bags and diaphragms……Page 214
3.5.1 Stokes boundary layer over an oscillating flat plate……Page 215
Cylinder bottom contribution……Page 217
Fluid depth effect……Page 218
Cylinder wall contribution……Page 219
3.5.3 Effect of immersed rods……Page 222
3.6 Closing remarks……Page 228
Part II Nonlinear and parametric sloshing dynamics……Page 231
4.1 Introduction……Page 233
Rotary sloshing in deep liquid tanks……Page 235
Rotary sloshing in shallow liquid tanks……Page 237
Asymptotic expansion equations……Page 238
Response and stability analyses……Page 243
Numerical and experimental results……Page 250
Chaotic sloshing……Page 254
Sine sweep excitation……Page 261
4.3.1 Background……Page 265
4.3.2 Experimental observations and results……Page 266
4.3.3 Stochastic analysis of earthquake excitation of liquid rigid tanks……Page 267
4.4.1 Background……Page 277
4.4.2 Longitudinal standing waves……Page 279
4.5 Conical tanks……Page 287
4.6 Prolate spheroidal container……Page 296
4.7 Spatial resonance……Page 302
4.8 Nonlinear sloshing of magnetic fluids……Page 304
4.9.1 Description of liquid dynamic problems in nuclear plants……Page 309
Rectangular tanks……Page 310
Cylindrical tanks……Page 312
4.10 Closing remarks……Page 317
Orthogonality and recurrence relations……Page 318
5.1 Introduction……Page 320
5.2 Spring-mass-dashpot modeling……Page 322
5.2.1 Lateral excitation of undamped models……Page 324
5.2.3 Model parameters for a circular upright cylinder……Page 325
5.2.4 Model parameters for a rectangular tank……Page 328
5.3 Pendulum modeling……Page 331
5.3.2 Pitching excitation:………Page 333
5.3.3 Mechanical parameters for a circular cylinder……Page 334
5.3.5 Spherical and oblate spheroidal containers……Page 335
5.5 Nonlinear modeling……Page 338
5.5.1 Mechanical modeling of nonplanar sloshing……Page 339
Nonlinear planar modeling……Page 342
Nonlinear nonplanar modeling……Page 343
5.5.2 Dynamics of the spherical pendulum……Page 344
Planar motion……Page 348
Nonplanar motion……Page 350
5.5.3 Linear plus spherical pendulums……Page 353
5.6 Closing remarks……Page 358
6.1 Introduction……Page 362
6.2 Linear theory of parametric sloshing……Page 365
6.3 Nonlinear parametric sloshing of a single mode……Page 368
6.4 Nonlinear modal competition……Page 374
6.5.1 Historical overview……Page 380
6.5.2 Lagrangian formulation……Page 382
6.5.3 Two-to-one internal resonance……Page 385
First mode parametric excitation……Page 388
Second mode excitation……Page 391
6.6.1 Analytical modeling……Page 394
6.6.2 Single mode excitation……Page 400
6.6.3 One-to-one internal resonance……Page 404
6.6.4 Experimental results……Page 413
6.7 Random parametric excitation……Page 418
6.8 Surface disintegration……Page 424
6.9 Closing remarks……Page 428
7.1 Introduction……Page 429
7.2 Shock wave in a gas column analogy……Page 432
7.3 Lateral excitation of a rectangular tank……Page 441
7.4 Impact due to sudden acceleration……Page 447
7.5 Modeling of hydrodynamic impact forces……Page 449
7.6.3 Nonsmooth coordinate transformation……Page 454
7.6.4 Saw-tooth time-transformation (STTT) method……Page 455
Basic concept……Page 458
Lie group operators……Page 460
7.7 Structure interaction with sloshing impact……Page 462
7.7.1 First mode parametric excitation……Page 467
7.7.2 Second mode parametric excitation……Page 472
7.7.3 Mixed mode parametric excitation……Page 476
7.8.1 Preliminaries……Page 479
7.8.2 The volume-of-fluid (VOF) method……Page 485
7.8.3 Sloshing impact in ship tankers……Page 487
7.9 Sloshing in road tankers……Page 495
7.10 Closing remarks……Page 497
Functions…of equations (7.54)……Page 499
Part III Sloshing – structure interaction……Page 503
8.1 Introduction……Page 505
8.2.1 Kinematic relations……Page 506
8.2.2 Hydroelastic interacting forces……Page 510
8.3 Interaction with tank bottom……Page 513
8.3.1 Interaction with elastic bottom……Page 514
Membrane bottom……Page 515
Elastic plate bottom……Page 521
Symmetric flow……Page 525
Axisymmetric flow……Page 531
Historical account……Page 536
Analysis……Page 539
8.5 Interaction with tank bottom and walls……Page 544
8.5.1 Shell with membrane bottom……Page 547
8.5.2 Shell with elastic plate bottom……Page 555
8.6 Closing remarks……Page 560
9.1 Introduction……Page 562
9.2 General equations of motion……Page 565
9.3.1 Free vibration of shells partially filled with still fluid……Page 567
9.3.2 Influence of liquid free surface oscillations……Page 568
9.3.3 Forced vibration of shells partially filled with still fluid……Page 569
9.4.1 Historical overview……Page 570
9.4.2 Interaction with linear liquid sloshing……Page 572
9.4.3 Free nonlinear multi-mode problem……Page 574
9.4.4 Multiple internal resonances……Page 579
9.4.5 Linear shell interaction with nonlinear liquid sloshing……Page 582
9.4.6 Nonlinear sloshing interaction with linear elastic bottom……Page 588
Nonlinear modal analysis……Page 590
Forcing response……Page 593
9.5.1 Governing equations of motion……Page 595
9.5.2 Free nonlinear interaction……Page 599
9.5.3 Forced autoparametric interaction……Page 601
9.6.1 Historical overview……Page 602
9.6.2 Parametric excitation of fundamental modes of a shell–liquid system……Page 604
9.6.3 Liquid-filled shell……Page 605
Initial state……Page 607
Nonlinear variational state……Page 609
9.7.1 Nonlinear free vibration……Page 612
9.7.2 Excitation of nonlinear sloshing interacting with linear orthotropic shells……Page 620
9.8 Storage liquid tanks……Page 625
9.9.1 Numerical simulation of liquid sloshing……Page 627
9.9.2 Numerical simulation of sloshing–structure interaction……Page 628
9.10 Closing remarks……Page 630
10.1 Introduction……Page 631
10.2 Basic concept of linear vibration absorbers……Page 633
10.3.1 Tuned liquid dampers……Page 637
10.3.2 Liquid column vibration absorbers……Page 639
10.4 Analytical modeling of liquid sloshing absorbers……Page 640
10.4.1 Vertical ground harmonic excitation……Page 644
First mode parametric excitation:………Page 646
Second mode parametric excitation:………Page 647
Mixed mode excitation:………Page 648
10.4.2 Horizontal ground harmonic excitation……Page 649
First mode excitation:………Page 652
Second mode excitation:………Page 655
10.5 Random excitation……Page 659
10.5.1 Horizontal and vertical random excitations……Page 660
Gaussian closure solution……Page 665
Non-Gaussian closure solution……Page 666
10.5.2 Vertical random excitation……Page 673
10.6 Autoparametric sloshing absorber……Page 683
10.6.1 Summed type internal resonance:………Page 687
10.6.2 Principal type internal resonance:……Page 692
Some remarks……Page 695
10.7 Nonlinear sloshing absorber in a rectangular tank……Page 697
10.8 Ship roll stabilization using liquid tanks……Page 701
10.8.1 Ship in pure rolling motion……Page 704
10.8.2 Influence of other ship motions……Page 706
10.9 Closing remarks……Page 713
Part IV Rotating fluid and low gravity sloshing……Page 715
11.1 Introduction……Page 717
11.2.1 Historical background……Page 720
11.2.2 Fluid-filled spinning cylinder……Page 721
11.3.1 Historical background……Page 727
Two-dimensional case……Page 732
Three-dimensional case……Page 736
11.3.3 Free oscillations of spinning viscous liquid……Page 741
Anchored contact-line……Page 743
Adhesion condition……Page 748
11.4 Parametric excitation of a spinning liquid……Page 754
11.5 Inertia waves in a rotating fluid……Page 761
11.6 Periodic breakdown of free surface……Page 763
11.7 Rotating liquids in microgravity……Page 767
11.7.2 Rotating free surface shape……Page 771
11.7.3 Time-dependent rotation and gravitational field……Page 772
11.8 Closing remarks……Page 775
12.1 Introduction……Page 776
12.2.1 Surface tension and bond number……Page 777
12.2.2 Static and dynamic contact-angle……Page 779
12.2.3 Kinematics of spherical surface……Page 785
12.3.1 Modal analysis under microgravity……Page 786
12.3.2 Modal analysis under zero gravity……Page 788
12.3.3 Experimental modal analysis……Page 792
12.4 Sloshing with slipping and anchored contact lines……Page 794
12.4.1 Modal analysis……Page 795
Slipping contact line……Page 798
Anchored contact-line……Page 802
12.5 Forced excitation……Page 805
12.5.1 Slipping contact line……Page 808
12.5.2 Anchored contact-line……Page 810
12.6 G-jitter modeling and effects……Page 812
12.7 Liquid handling……Page 815
12.8.1 Marangoni flow……Page 817
12.8.3 Static stability of liquid bridges……Page 819
12.8.4 Dynamic stability of liquid bridges……Page 821
12.8.5 Axial excitation of liquid bridges……Page 824
12.8.6 Axial excitation of spinning liquid bridges……Page 829
12.9.1 Thermocapillary instability of fluid flow……Page 837
12.9.2 Thermocapillary instability of liquid bridges……Page 842
12.10.1 Physical characteristics of superfluids……Page 848
12.10.2 Sloshing of cryogenics……Page 849
12.11 Hydroelastic oscillations……Page 853
12.12 Closing remarks……Page 854
A1 Common dimensionless numbers……Page 855
References……Page 857
Index……Page 964
Reviews
There are no reviews yet.