industrial gas handbook – gas separation and purification

Free Download

Authors:

ISBN: 0849390052, 9780849390050, 9781420008265

Size: 24 MB (24864665 bytes)

Pages: 539/539

File format:

Language:

Publishing Year:

Frank G. Kerry0849390052, 9780849390050, 9781420008265

Drawing on Frank G. Kerry’s more than 60 years of experience as a practicing engineer, the Industrial Gas Handbook: Gas Separation and Purification provides from-the-trenches advice that helps practicing engineers master and advance in the field. It offers detailed discussions and up-to-date approaches to process cycles for cryogenic separation of air, adsorption processes for front-end air purification, and related process control and instrumentation. The book uses SI units in accordance with international industry and covers topics such as chronological development, industrial applications, air separation technologies, noble gases, front end purification systems, insulation, non-cryogenic separation, safety, cleaning for oxygen systems, economics, and product liquefaction, storage, and transportation. No other book currently available takes the practical approach of this book — they are either outdated, too theoretical, or narrow in focus. In a clear and effective presentation, Industrial Gas Handbook: Gas Separation and Purification covers the principles and applications of industrial gas separation and purification. Features •          Covers the nuts and bolts of cryogenic plants, particularly cryogenic distillation •          Illustrates the role of purification processes for non-petroleum-based fuel and energy •          Includes an economic overview of the field and business terminology engineers will need throughout their career •          Provides guidance on how to choose the correct cleaning procedure to fit existing conditions •          Discusses the importance of safety and prevention of accidents •          Explores general requirements of instrumentation and controls and control systems philosophy

Table of contents :
Industrial Gas Handbook: Gas Separation and Purification……Page 3
Preface……Page 7
Author……Page 11
Table of Contents……Page 13
1.1 Introduction……Page 30
1.2.1 General Principles of Thermodynamics……Page 32
1.2.2 Enthalpy (H) (J/kg)……Page 33
1.2.4 Carnot Cycle……Page 34
1.2.5.1 Irreversible Systems……Page 35
1.2.6 Third Law……Page 36
1.2.9 Compressibility……Page 37
1.2.10 Free Expansion through a Valve……Page 39
1.2.11 Inversion……Page 40
1.2.11.1 Deviation from Boyle’s Law……Page 41
1.2.12 Adiabatic Expansion……Page 42
1.2.13 Thermodynamic Charts and Tables……Page 43
1.2.14 Cryogenic Properties of Air……Page 44
1.2.16 Vapor Compression Systems……Page 45
1.2.17.1 High-Pressure Free Expansion (Isenthalpic Linde–Hampson) System……Page 46
1.2.17.3 Precooling Systems……Page 47
1.2.17.4 Cascade Systems……Page 48
References……Page 49
2.2 Heat Exchangers……Page 50
2.4 Contemporary Liquefaction Cycles……Page 51
2.5 Linde Cycle (Free Expansion through a Valve)……Page 52
2.5.1 Theoretical Analysis of the First Linde High Pressure Cycle……Page 53
2.5.2 Theoretical Analysis of Linde Basic Cycle with Precooling……Page 54
2.5.3 Theoretical Analysis of the Linde High-Pressure Dual Process……Page 56
2.6 Theoretical Analysis of the Claude Cycle……Page 58
2.6.2 Claude Cycle with Dual Pressures……Page 60
2.6.3 Claude Cycle with High Precooling to Liquefy Hydrogen or Neon……Page 63
2.8 Cascade Cycle……Page 65
Further Reading……Page 68
3.1 Air Separation Overview……Page 70
3.1.1 Linde’s First Fractionation Machine……Page 71
3.2.1 Evaporation and Condensation……Page 74
3.2.2 Simple Separation by Condensation and Flashing (Separators)……Page 79
3.2.2.2 Procedure……Page 81
3.2.2.3 Practical Example (It Requires Iteration)……Page 83
3.2.4 Fractionation Methods……Page 84
3.2.5 Fractionation Plates……Page 86
3.2.6.1 Case I: Analysis of a Low Pressure Column……Page 87
3.2.6.2 Case II: Consideration of Vapor Feed……Page 89
3.3 Practical Considerations……Page 91
3.3.1 Bubble-Cap Trays……Page 92
3.3.3 Structured Packings……Page 93
3.3.5 Safety in the Use of Structured Packing……Page 94
3.4.1 FCV-1……Page 95
3.6 Optimum Reflux……Page 96
3.7.2 Lower (High Pressure) Column……Page 98
3.7.3 Main Condenser……Page 99
3.7.5 Process Considerations……Page 100
3.8 Development of Low Oxygen-Purity Processes……Page 102
3.8.1 The Lachmann Principle (Figure 3.18)……Page 103
3.8.2 The Oxyton Process……Page 104
3.8.2.1 Thermodynamic Analysis of the Oxyton Cycle……Page 105
3.8.2.2 Oxyton Development……Page 106
3.8.3.1 Version A……Page 107
3.8.3.2 Version B……Page 108
3.9 Exergy……Page 109
References……Page 111
4.1 Helium……Page 114
4.1.1 Sources of Helium……Page 115
4.1.2 General Principles of Recovery of Helium……Page 116
4.1.3 Recovery Processes from Natural Gases……Page 119
4.1.4 Applications of Helium……Page 120
4.2.2 Sources of Neon……Page 121
4.2.4 Industrial Recovery of Neon……Page 122
4.3.3 Recovery of Argon……Page 123
4.3.4 Recovery Procedure and Equipment……Page 124
4.3.6 Refining Operation and Equipment……Page 126
4.3.7 Applications of Argon……Page 128
4.4.3 Recovery of Krypton and Xenon……Page 129
4.4.5 Recovery of Rare Gases from Ammonia Purge Gas……Page 131
References……Page 132
Further Reading……Page 133
5.1.2 Original Prepurification……Page 134
5.1.3.1 General……Page 135
5.1.4.2 Regeneration of Activated Alumina……Page 136
5.1.5.1 Chemical Formula……Page 137
5.1.5.2 Types of Molecular Sieves……Page 138
5.1.6 Silica Gel……Page 139
5.2.1 General Background……Page 140
5.2.2.2 Direct Contact Aftercooler (Figure 5.1)……Page 141
5.2.3 Adsorber Unit……Page 142
5.2.3.2 Multiple Vertical Vessels……Page 144
5.2.3.3 Horizontal Vessels (Figure 5.5a)……Page 146
5.2.3.4 Radial or Concentric Design……Page 148
5.3.1 Isolation Valve Downstream of FEP (Figure 5.7)……Page 149
5.3.3 Regeneration Concerns……Page 151
5.3.6.1 General……Page 154
5.3.8 Operational Time Cycle (Figure 5.12)……Page 157
5.3.9.1 Improving Operating Stability……Page 158
5.4 Safety……Page 159
5.4.1 Hydrocarbon Breakthrough……Page 160
5.4.3 Liquid Oxygen Purge……Page 161
5.5.1 Background……Page 162
5.5.2 Pressure Swing Adsorption……Page 163
5.5.3 Industrial Applications in Air Separation Plants……Page 164
5.5.4 Observations on PSA Prepurification……Page 165
5.5.5 Field Observations……Page 166
References……Page 167
Further Reading on the Subject of Adsorption and Carbon Dioxide Build-up……Page 168
6.1.1 New Applications……Page 170
6.2 Product Liquefaction……Page 171
6.2.2 Direct Extraction……Page 172
6.2.3 Basic Design Parameters for an Efficient Liquefaction System……Page 174
6.2.4.1 Independent Liquefier (Figure 6.2)……Page 175
6.2.4.2 Integrated Liquefier (Figure 6.4)……Page 176
6.2.4.3 Very High-Pressure Liquefiers……Page 178
6.2.4.4 General Summary……Page 179
6.3.2.2 Wind Loading……Page 180
6.3.3.1 Low-Pressure Shop-Built Tanks……Page 181
6.3.4 Design Selection……Page 182
6.3.5.1.2 Materials……Page 183
6.3.5.2.1 Design and Materials……Page 184
6.3.5.3.2 Materials and Codes……Page 186
6.3.5.4.3 Materials……Page 187
6.3.6.2 Small Portable Containers……Page 189
6.3.6.5 Liquid Deliveries by Truck……Page 190
6.4.2 Variety of Applications……Page 191
6.4.3 Materials……Page 192
6.4.5 Net Positive Suction Head (Figure 6.14)……Page 194
6.4.8.1 Velocity Constraints of Cryogenic Fluids……Page 197
6.4.8.2 Pressure Drops due to Piping Components……Page 199
6.4.9 Start-up of Pumps……Page 201
6.4.10 High-Pressure Radial Pumps (Figure 6.17a,b)……Page 202
6.4.11 Ultrahigh Pressure Pumps……Page 204
6.5.1 General Overview……Page 205
6.5.3 Direct Steam Vaporizers (Figure 6.19)……Page 206
6.5.3.1 Vaporization with Steam-Heated Water……Page 207
References……Page 208
7.1.2 Insulations: General……Page 210
7.1.3 Vacuum Insulation (Radiation)……Page 211
7.1.5 Natural Convection in Mass Insulation……Page 214
7.1.6 Vacuum Plus Powder or with Fibrous Insulations……Page 215
7.1.7 Insulation (Multilayer, Super, or Simply MLI)……Page 219
7.2.1 Industrial Applications of Insulation……Page 220
7.2.3 Mineral Wool (Rock Wool, Figure 7.4a)……Page 222
7.2.4 Expanded Perlite……Page 224
7.2.5 Glass Wool (Fiberglass)……Page 225
7.2.8 Silica Aerogel……Page 227
7.3 Cold Box Design for Insulation……Page 228
7.3.1 Special Requirements for Liquid Hydrogen Processing Plants……Page 230
7.4.1 Short Lines……Page 231
7.4.5 Multilayer Insulation……Page 232
7.4.6 Cryogenic Liquid Piping Design……Page 234
7.5.2 Smaller Storage Tanks (500 to 1000 t or 500 to 1000 kL)……Page 235
7.5.4 Storage Vessels (up to 50 t or 50 kL)……Page 236
7.6.1 General Overview……Page 237
7.6.2.1 Roots Vacuum Pump……Page 240
7.6.2.2 Rotary Vacuum Pump……Page 241
7.6.2.3 Turbomolecular Pumps……Page 242
7.6.2.4 Cryopumps (Figure 7.14 through Figure 7.16)……Page 243
7.6.2.5 Adsorption Pumps (Figure 7.17)……Page 246
7.6.2.6 Getters……Page 247
7.6.3 Periodic Purging and Deriming……Page 248
7.6.4.2 Vacuum Measurement……Page 249
For Further Study and Review……Page 250
8.1 Hydrogen……Page 252
8.1.2 Recovery of Hydrogen……Page 253
8.1.4 Refinery In-House Recovery of Hydrogen……Page 254
8.1.6.1 Electrolysis of Water (Figure 8.1)……Page 255
8.1.6.4 Small Steam Reforming Plants (150–1000 Nm3/h)……Page 257
8.1.6.5 Large Hydrogen Generation Plants (over 1000 Nm3/h)……Page 258
8.1.7.2 Partial Oxidation Process……Page 259
8.1.7.5 Other Uses for Synthesis Gas……Page 260
8.2 Carbon Monoxide……Page 261
8.2.1 Sources……Page 262
8.2.3 General Process of Recovery……Page 263
8.2.4 Basic Cryogenic Recovery Processes……Page 264
8.2.4.1 Methane Wash Cryogenic Recovery (Figure 8.4)……Page 266
8.2.4.2 Simplified Carbon Monoxide Recovery……Page 267
8.2.5.1 Requirements for a Liquid CO Pump……Page 268
8.3.1 General Characteristics……Page 269
8.3.3 Applications for Inertness……Page 270
8.3.3.2 Nitrogen as an Emissions Controller……Page 271
8.3.4 Process and Equipment Options……Page 272
8.3.4.1 Cryogenic Process Cycle……Page 273
8.3.4.3 Pressure Swing Adsorption……Page 274
8.3.5.1 Removal of Outside Impurities……Page 275
8.3.5.3.1 Contamination Due to Outside Factors……Page 276
8.3.6.4 Dangerous Side of Nitrous Oxide……Page 278
8.4.1 General Characteristics……Page 279
8.4.3.1 Food Grade Recovery from Petroleum Off-Gases……Page 280
8.4.3.3 Nonfood Grade Carbon Dioxide……Page 281
8.4.5 Applications of Carbon Dioxide……Page 282
8.5.2 Properties of Ozone……Page 283
8.6 Methane……Page 284
8.6.2 High-Purity Methane for Chemicals……Page 285
8.6.4.1 Cascade Cycle with Mixed Refrigerants in General……Page 287
8.6.4.2 ARC Process Cycle……Page 290
8.6.4.3 Further Development of Mixed Refrigerant Cycles……Page 291
8.6.4.4 Heat Exchangers……Page 292
8.6.6.1 Nitrogen Rejection……Page 293
8.6.7.3 Mercury Contamination……Page 294
8.6.8 Economics……Page 295
8.6.9 Safety (Figure 8.14 and Figure 8.15)……Page 296
References……Page 299
Further Reading on LNG……Page 300
9.1.1 General Principles……Page 302
9.1.2 Mechanical Design of Membranes……Page 306
9.1.3 General Applications……Page 307
9.1.3.1 Nitrogen Separation……Page 308
9.1.3.3 Hydrogen Recovery……Page 309
9.2.1.2 Regeneration of Adsorbent……Page 310
9.3 Nitrogen Recovery……Page 311
9.3.1 Carbon Adsorbent (Carbon Molecular Sieve) (CMS)……Page 312
9.3.2 High-Purity Hydrogen Recovery……Page 313
9.3.4.1 Basic Principles……Page 314
9.3.4.2 Disadvantages of Adsorption……Page 315
Additional Reading on Noncryogenic Separations……Page 316
10.1.2 Parameters of Design……Page 318
10.1.3 Basic Principles……Page 320
10.1.4 Typical Example for Designing Tubular Heat Exchangers……Page 323
10.1.6 Effectiveness (ε)……Page 325
10.1.7 Operability……Page 328
10.1.8 Efficiency (η)……Page 329
10.1.9 Industrial Applications……Page 330
10.1.10.1 Pressure Limitations……Page 331
10.1.11 Vacuum Brazed Heat Exchangers……Page 333
10.1.12 Mechanical Construction……Page 334
10.1.13 Limitations……Page 335
10.1.14 Operation and Maintenance……Page 336
References……Page 338
Further Reading……Page 339
10.2.1.1 General……Page 340
10.2.3 Radial Expansion Machines……Page 341
10.2.4 Process Applications……Page 343
10.2.5 Operational Factor (Air Separation Plants)……Page 344
10.2.6 Refrigeration Availability……Page 345
10.2.7 Process Technology……Page 346
10.2.8 Expansion Turbine Efficiency……Page 348
10.2.10 Measuring Efficiency (Figure 10.2.7)……Page 349
10.2.11 Various Expansion Turbine Systems……Page 350
10.2.12.1 General……Page 351
10.2.12.2 Operational Control……Page 355
10.2.12.5 Materials of Construction……Page 356
10.2.12.6 Bearings……Page 357
10.2.13.1 Process Control……Page 358
10.2.15 General Applications for Expansion Machines……Page 359
Supplementary Reading……Page 360
10.3.2 Definitions……Page 362
10.3.3.1 General Parameters of Design (Per Stage)……Page 366
10.3.3.3 Surge Limitations and Pumping……Page 367
10.3.3.7 Multistaging……Page 370
10.3.3.9 Specific Speed……Page 372
10.3.3.15 Diffusers……Page 374
10.3.4 Axial–Centrifugal Compressors (Figure 10.3.12a)……Page 375
10.3.5 Axial Compressors……Page 376
10.3.6.2.1 Gas Side……Page 378
10.3.6.2.2 Mechanical Power Side……Page 379
10.3.6.3 Economics……Page 380
10.3.7.1 General Overview……Page 381
10.3.7.2 General Safety Parameters……Page 382
10.3.7.3 Safe Operation of Centrifugal Oxygen Compressors……Page 383
10.3.7.4 Ultrahigh-Pressure Oxygen Compressors……Page 384
10.3.8.2 Basic Design for Achieving Oil-Free Operation……Page 385
10.3.8.5 Internal Operating Elements……Page 386
10.3.9.1 Motor Torque……Page 389
10.3.10 Operating Reliability versus Capital Costs of Compressors……Page 390
Variables……Page 392
References……Page 394
10.4.2 General Design in Sizing……Page 396
10.4.3 Sizing Parameters……Page 397
10.4.5 Nonmetallic Material……Page 398
10.4.7 Warm End Switching Valves……Page 399
10.4.8 Flow Control Check Valves……Page 400
10.4.10 Hand-Operated Cryogenic Valves……Page 401
10.4.11 Process Control Valves……Page 402
10.4.13 Valve Connections……Page 406
10.4.14 Insulation and Casing Designs for Cryogenic Valves……Page 407
10.4.16 Automatic Control of Cryogenic Valves……Page 408
10.4.18 Pressure Safety Relief Valves: Overview……Page 409
10.4.18.1 Sizing for Pressure Safety Relief Valves (International Units) SI†……Page 411
10.4.18.3 Pressure and Vacuum Relief Valves……Page 412
10.4.19 Maintenance of Cryogenic Valves……Page 414
10.4.20 Valve Stations: General……Page 415
10.4.22 Destruction of a Pressure Reduction Station……Page 416
10.4.23 Recommendations Applicable to Pressure-Reducing Stations……Page 417
Further Reading……Page 418
11.2 General Requirements……Page 420
11.3 Controls and Control System Philosophy (Figure 11.2 Through Figure 11.4)……Page 422
11.4.1 General……Page 424
11.4.5 Front-End Purification……Page 425
11.4.11 Cooling Water System……Page 426
11.5.1 Scope……Page 427
11.5.4 Distributed Control System……Page 430
11.5.5.1 Level Instruments……Page 431
11.5.5.4 Valves……Page 432
11.5.5.5 Transmitters……Page 433
11.5.5.9 General……Page 434
11.5.6.2 Large Transformers……Page 437
12.1 Safety Overview……Page 438
12.2.1 Source of Combustibles……Page 441
12.2.2 Ignition Energy……Page 442
12.4.1 Adsorption Systems……Page 445
12.4.3 Nonreversing Heat Exchangers (Primary Heat Exchangers)……Page 446
12.4.4 Distillation Column and Main Condenser……Page 447
12.4.5 Auxiliary Vaporizers……Page 448
12.4.6.1 Rich Liquid Filters……Page 449
12.5 Parameters for the Safe Design of a Process Cycle……Page 450
12.6.2 Reversing Heat Exchangers……Page 451
12.6.5 Main Condenser……Page 452
12.7.2 Propane as a Contaminant……Page 454
12.8.2 Liquid Oxygen Recirculating Pumps……Page 455
12.8.4 Liquid Oxygen Disposal……Page 456
12.9.1 Analytical Equipment……Page 458
12.12 Causes of Combustion……Page 459
12.13 Test Procedures and Results as Explained by De Jessey……Page 461
12.14.2 A Very Careful Selection of Materials……Page 463
12.15.1 Tests……Page 464
12.15.3 Nonferrous Metals……Page 465
12.15.4 Further Studies……Page 466
12.15.8 Copper and Its Alloys……Page 468
12.15.12 Supplementary Tests on Aluminum……Page 469
12.15.15 Summary……Page 470
12.15.19 Caution……Page 471
References……Page 472
For Further Reading……Page 473
13.2 General Considerations……Page 474
13.3.2 Inspection Standards for Movable Parts……Page 475
13.4.1 Cleaning Procedures: General……Page 476
13.5.1 Definition and Recognition of Contaminants……Page 477
13.6.2 Sand Blasting in Place (Sandjet)3……Page 478
13.6.2.3 Inspection and Control……Page 479
13.6.4 Pre-Cleaning before Erection (with Cleaning Reagents)……Page 480
13.6.6 Alternative A—with Solvents……Page 481
13.6.8 Alternative C—with Movable Pistons……Page 483
13.6.11 Alternate Methods of Cleaning Stainless Steel Pipe, Aluminum Pipe, Copper Tubing, and Their Fittings……Page 484
13.7 Cleaning Agents……Page 485
13.8.2 Acid Solutions……Page 486
13.8.3 Agents for Stainless Steel, Copper, and Aluminum……Page 487
13.10 Testing and Inspection Procedures5……Page 488
13.10.2 After Using Solvents or Chemicals……Page 489
13.11.1 Wire Brushes……Page 490
13.12.4 Cleaning Contractors……Page 491
13.13.3 Large Equipment……Page 492
References……Page 493
14.1 General Overview……Page 494
14.3 Post–World War II Development……Page 495
14.5.1 Oxygen Purity……Page 496
14.5.2 Liquid Oxygen Production……Page 497
14.5.3 Pure Nitrogen Recovery (Purity at 99.9995%)……Page 498
14.6 Investment Costs in General……Page 499
14.6.2 Contingencies……Page 501
14.7 Operating Costs……Page 502
14.8 Maintenance……Page 506
14.10 Challenging Market Conditions……Page 507
14.11 Investing in a Project……Page 509
14.11.2 Present Value of an Investment……Page 510
14.12 Envoi……Page 512
Appendix……Page 514

Reviews

There are no reviews yet.

Be the first to review “industrial gas handbook – gas separation and purification”
Shopping Cart
Scroll to Top