Warren Rohsenow, James Hartnett, Young Cho9780070535558, 0-07-053555-8
Table of contents :
Front Matter……Page 1
Contributors……Page 3
Table of Contents……Page 0
Preface……Page 5
Table of Contents……Page 7
17.8 Flow-Induced Vibration……Page 8
1.1.1 Conduction……Page 18
1.1.2 Radiation……Page 20
1.1.3 Convection……Page 21
1.1.4 Combined Heat Transfer Mechanisms……Page 27
1.2 Conservation Equations……Page 28
1.2.1 The Equation of Continuity……Page 30
1.2.2 The Equation of Motion (Momentum Equation)……Page 31
1.2.3 The Energy Equation……Page 32
1.2.4 The Conservation Equations for Species……Page 38
1.2.5 Use of Conservation Equations to Set up Problems……Page 39
1.3 Dimensionless Groups and Similarity in Heat Transfer……Page 40
1.4 Units and Conversion Factors……Page 46
1.5 Nomenclature……Page 50
1.6 References……Page 53
2.1 Conversion Factors……Page 55
2.2 Thermophysical Properties of Gases……Page 57
2.3 Thermophysical Properties of Liquids……Page 80
2.4 Thermophysical Properties of Solids……Page 100
2.5 Thermophysical Properties of Saturated Refrigerants……Page 123
2.8 References……Page 127
2.9 Selected Additional Sources of Thermophysical Properties……Page 128
3.1 Introduction……Page 129
3.2 Basic Equations, Definitions, and Relationships……Page 130
3.2.1 Shape Factors……Page 131
3.2.2 Shape Factors for Ellipsoids: Integral Form for Numerical Calculations……Page 139
3.2.3 Shape Factors for Three-Dimensional Bodies in Unbounded Domains……Page 143
3.2.4 Three-Dimensional Bodies with Layers: Langmuir Method……Page 147
3.2.5 Shape Factors for Two-Dimensional Systems……Page 148
3.3.2 Internal Transient Conduction……Page 151
3.3.4 Heisler and Grober Charts – Single-Term Approximations……Page 152
3.3.5 Multidimensional Systems……Page 153
3.3.6 Transient One-Dimensional Conduction in Half-Spaces……Page 154
3.3.7 External Transient Conduction from Long Cylinders……Page 156
3.3.8 Transient External Conduction from Spheres……Page 157
3.3.9 Instantaneous Thermal Resistance……Page 158
3.3.10 Transient External Conduction from Isothermal Convex Bodies……Page 159
3.4.2 Definitions of Spreading Resistance……Page 162
3.4.3 Spreading Resistance of Isoflux Arbitrary Areas on Half-Space……Page 163
3.4.4 Circular Annular Contact Areas on Half-Space……Page 164
3.4.5 Doubly Connected Isoflux Contact Areas on Half-Space……Page 165
3.4.6 Effect of Contact Conductance on Spreading Resistance……Page 166
3.4.8 Effect of Flux Distribution on Circular Contact Area on Half-Space……Page 167
3.4.10 Accurate Correlation Equations for Various Combinations of Contact Area, Flux Tubes, and Boundary Condition……Page 168
3.4.12 Spreading Resistance within Two-Dimensional Channels……Page 169
3.4.13 Effect of Single and Multiple Layers (Coatings) on Spreading Resistance……Page 171
3.4.14 Circular Contact Area on Single Layer (Coating) on Half-Space……Page 174
3.4.15 Circular Contact Area on Multiple Layers on Circular Flux Tube……Page 175
3.4.16 Transient Spreading Resistance……Page 176
3.4.17 Transient Spreading Resistance of Isoflux Hyperellipse Contact Area on Half-Space……Page 177
3.4.19 Transient Spreading Resistance within Semi-Infinite Flux Tubes and Channels……Page 178
3.5.1 Point and Line Contact Models……Page 179
3.5.2 Thermal Contact, Gap, and Joint Conductance Models……Page 183
3.5.3 Gap Conductance Model and Integral……Page 187
3.7 Nomenclature……Page 188
3.8 References……Page 195
4.2.1 Equations of Motion and Their Simplification……Page 202
4.2.2 Problem Classification……Page 206
4.2.3 Heat Transfer Correlation Method……Page 207
4.3 External Natural Convection……Page 213
4.3.1 Flat Plates……Page 214
4.3.2 Cylinders……Page 220
4.4.1 Cooling Channels……Page 233
4.4.2 Extended Surfaces……Page 237
4.5.2 Geometry and List of Parameters for Cavities without Interior Solids……Page 241
4.5.3 The Conduction Layer Model……Page 244
4.5.4 Horizontal Rectangular Parallelepiped and Circular Cylinder Cavities……Page 245
4.5.5 Heat Transfer in Vertical Rectangular Parallelepiped Cavities: 0 = 90°……Page 251
4.5.6 Heat Transfer in Inclined Rectangular Cavities……Page 256
4.5.7 Heat Transfer in Enclosures with Interior Solids at Prescribed Temperature……Page 259
4.5.8 Partitioned Enclosures……Page 261
4.6.1 External Transient Convection……Page 264
4.6.2 Internal Transient Convection……Page 267
4.7.1 Internal Problems……Page 269
4.8.1 Properties and Dimensionless Groups……Page 270
4.8.2 External Heat Transfer Correlations……Page 272
4.8.3 Internal Heat Transfer Correlations……Page 273
4.9.1 External Flows……Page 274
4.9.2 Internal Flows……Page 279
4.11 Nomenclature……Page 281
4.12 References……Page 288
5.1.2 Characteristics of Laminar Flow in Ducts……Page 301
5.1.3 Characteristics of Turbulent Flow in Ducts……Page 302
5.1.5 Fluid Flow Parameters……Page 303
5.1.6 Heat Transfer Parameters……Page 304
5.2 Circular Ducts……Page 305
5.2.1 Laminar Flow……Page 306
5.2.2 Turbulent Flow……Page 318
5.2.3 Transition Flow……Page 330
5.3.1 Four Fundamental Thermal Boundary Conditions……Page 332
5.3.2 Laminar Flow……Page 333
5.3.3 Turbulent Flow……Page 350
5.4.1 Laminar Flow……Page 359
5.4.2 Turbulent Flow……Page 365
5.5.1 Laminar Flow……Page 367
5.5.2 Turbulent Flow……Page 372
5.6.1 Laminar Flow……Page 373
5.6.2 Turbulent Flow……Page 378
5.7.1 Laminar Flow……Page 382
5.8 Curved Ducts and Helicoidal Pipes……Page 384
5.8.1 Fully Developed Laminar Flow……Page 385
5.8.3 Turbulent Flow in Coils with Circular Cross Sections……Page 390
5.8.4 Fully Developed Laminar Flow in Curved, Square, and Rectangular Ducts……Page 391
5.8.7 Laminar Flow in Curved Ducts with Elliptic Cross Sections……Page 392
5.9.1 Laminar Flow……Page 393
5.9.2 Fully Developed Turbulent Flow……Page 397
5.10 Internally Finned Tubes……Page 399
5.10.1 Circular Ducts with Thin Longitudinal Fins……Page 400
5.10.4 Circular Ducts with Longitudinal Triangular Fins……Page 401
5.10.5 Circular Ducts with Twisted Tape……Page 402
5.10.7 Elliptical Ducts with Internal Longitudinal Fins……Page 404
5.11.1 Sine Ducts……Page 405
5.11.2 Trapezoidal Ducts……Page 406
5.11.5 Regular Polygonal Ducts……Page 407
5.11.7 Circular Segment Ducts……Page 408
5.11.8 Annular Sector Ducts……Page 410
5.11.9 Stadium-Shaped Ducts……Page 411
5.11.11 Corrugated Ducts……Page 413
5.11.12 Parallel Plate Ducts with Spanwise Periodic Corrugations at One Wall……Page 415
5.11.13 Cusped Ducts……Page 416
5.12.1 Confocal Elliptical Ducts……Page 417
5.12.3 Circular Ducts with Centered Regular Polygonal Cores……Page 418
5.14 Nomenclature……Page 420
5.15 References……Page 425
6.1 Introduction……Page 438
6.3.1 Uniform Free-Stream Conditions……Page 439
6.3.2 Surface with Streamwise Pressure Gradient……Page 465
6.4.1 Turbulence Transport Mechanisms and Modeling……Page 483
6.4.2 Uniform Free-Stream Conditions……Page 491
6.5.1 Transitional Boundary Layers for Uniform Free-Stream Velocity……Page 509
6.6 Complex Configurations……Page 511
6.7 Nomenclature……Page 512
6.8 References……Page 517
7.1 Introduction……Page 524
7.1.1 Radiation Intensity and Flux……Page 525
7.1.2 Blackbody Radiation……Page 526
7.1.3 Nonblack Surfaces and Materials……Page 529
7.2.1 Black Surfaces……Page 535
7.2.2 Exchange Among Gray Diffuse Surfaces……Page 539
7.3.1 Fundamentals and Definitions……Page 542
7.3.2 Solution Techniques for the RTE……Page 547
7.3.3 Solutions to Benchmark Problems……Page 566
7.4.1 Radiative Properties of Gases……Page 567
7.4.2 Radiative Properties of Particulates……Page 578
7.4.3 Radiative Properties of Porous Materials……Page 589
7.4.4 Radiative Properties of Semitransparent Materials……Page 592
7.5.1 The General Energy Equation……Page 593
7.5.3 Interaction with Combustion and Turbulence……Page 594
7.6 Closing Remarks……Page 595
Appendix A: Radiative Property Tables……Page 596
Appendix B: Radiation Configuration Factors……Page 599
Nomenclature……Page 607
References……Page 610
8.1 Introduction……Page 624
8.2 Time and Length Scales……Page 625
8.3.1 Formulation……Page 626
8.3.2 Thermal Conductivity of Crystalline and Amorphous Solids……Page 628
8.4.1 General Formulation……Page 632
8.4.2 Fourier and Ohm’s Laws……Page 634
8.4.4 Mass, Momentum, and Energy Conservation – Hydrodynamic Equations……Page 635
8.4.5 Equation of Radiative Transfer for Photons and Phonons……Page 638
8.5 Nonequilibrium Energy Transfer……Page 639
8.5.1 Joule Heating in High-Field Electronic Devices……Page 640
8.5.2 Radiative Heating by Ultrashort Laser Pulses……Page 644
8.6 Summary……Page 646
8.7 Nomenclature……Page 647
8.8 References……Page 648
9.1 Introduction……Page 650
9.2.1 Conduction Heat Transfer……Page 653
9.2.2 Convection Heat Transfer……Page 656
9.2.3 Radiation Heat Transfer……Page 662
9.2.4 Two-Medium Treatment……Page 681
9.3 Two-Phase Flow……Page 684
9.3.1 Momentum Equations for Liquid-Gas Flow……Page 685
9.3.2 Local Volume Averaging of Energy Equation……Page 687
9.3.3 Effective Thermal Conductivity……Page 690
9.3.4 Thermal Dispersion……Page 691
9.4.1 Condensation at Vertical Impermeable Bounding Surfaces……Page 693
9.4.2 Evaporation at Vertical Impermeable Bounding Surfaces……Page 700
9.4.3 Evaporation at Horizontal Impermeable Bounding Surfaces……Page 701
9.4.4 Evaporation at Thin Porous-Layer-Coated Surfaces……Page 707
9.4.5 Melting and Solidification……Page 709
9.5 Nomenclature……Page 717
9.6 Glossary……Page 721
9.7 References……Page 725
10.1.2 Classification of Nonnewtonian Fluids……Page 732
10.1.3 Material Functions of Nonnewtonian Fluids……Page 733
10.1.4 Rheological Property Measurements……Page 734
10.1.5 Thermophysical Properties of Nonnewtonian Fluids……Page 738
10.1.6 Governing Equations of Nonnewtonian Fluids……Page 739
10.1.7 Use of Reynolds and Prandtl Numbers……Page 740
10.2.1 Velocity Distribution and Friction Factor……Page 742
10.2.3 Laminar Heat Transfer in the Thermal Entrance Region……Page 744
10.3.1 Velocity Distribution and Friction Factor……Page 745
10.3.2 Fully Developed Heat Transfer – Purely Viscous Fluids……Page 748
10.3.3 Heat Transfer in the Thermal Entrance Region – Purely Viscous Fluids……Page 752
10.3.4 Laminar Heat Transfer to Viscoelastic Fluids in Rectangular Ducts……Page 754
10.4.1 Fully Established Friction Factor……Page 760
10.4.2 Heat Transfer……Page 761
10.5.1 Friction Factor and Velocity Distribution……Page 762
10.5.2 Heat Transfer……Page 766
10.5.3 Degradation……Page 769
10.5.4 Solvent Effects……Page 771
10.5.5 Failure of the Reynolds-Colburn Analogy……Page 772
10.6.1 Friction Factor……Page 773
10.7.1 Friction Factor……Page 774
10.7.2 Heat Transfer……Page 775
10.9.2 Free Convection……Page 776
10.10 Nomenclature……Page 777
10.11 References……Page 780
11.1.2 Classification of Heat Transfer Enhancement Techniques……Page 785
11.1.3 Performance Evaluation Criteria……Page 787
11.2.1 Boiling……Page 790
11.3.1 Single-Phase Flow……Page 793
11.3.3 Condensing……Page 799
11.4.1 Single-Phase Flow……Page 800
11.4.2 Boiling……Page 805
11.4.3 Condensing……Page 808
11.5.1 Single-Phase Flow……Page 813
11.5.2 Flow Boiling……Page 816
11.5.3 Condensing……Page 817
11.6.1 Single-Phase Flow……Page 818
11.6.2 Boiling……Page 822
11.6.3 Condensing……Page 824
11.8.2 Gas Bubbles in Single-Phase Flow……Page 825
11.8.3 Liquid Additives for Boiling……Page 826
11.9.1 Solid Particles in Single-Phase Flow……Page 828
11.10.1 Stirring……Page 829
11.11.1 Single-Phase Flow……Page 830
11.12.1 Single-Phase Flow……Page 833
11.12.2 Boiling……Page 835
11.13 Electric and Magnetic Fields……Page 836
11.14 Injection……Page 838
11.16 Compound Enhancement……Page 839
11.17 Prospects for the Future……Page 840
11.18 Nomenclature……Page 841
11.19 References……Page 844
12.1 Introduction……Page 861
12.2 Fundamental Operating Principles……Page 862
12.2.1 Capillary Limitation……Page 863
12.2.2 Other Limitations……Page 868
12.3 Design and Manufacturing Considerations……Page 870
12.3.2 Wicking Structures……Page 871
12.3.4 Heat Pipe Sizes and Shapes……Page 872
12.3.5 Reliability and Life Tests……Page 873
12.4 Heat Pipe Thermal Resistance……Page 874
12.5.1 Variable-Conductance Heat Pipes……Page 875
12.5.2 Micro-Heat Pipes……Page 876
12.6 Nomenclature……Page 877
12.7 References……Page 878
13.1 Introduction……Page 881
13.2.1 Packed Beds……Page 883
13.2.2 Fluidized Beds……Page 884
13.3 Heat Transfer in Packed Beds……Page 888
13.3.2 Effective Thermal Conductivity……Page 889
13.3.3 Wall-to-Bed Heat Transfer……Page 893
13.4.1 Gas-Solid Fluidized Beds……Page 894
13.4.2 Liquid-Solid Fluidized Beds……Page 914
13.5 Concluding Remarks……Page 917
13.6 Nomenclature……Page 918
13.7 References……Page 921
14.1.1 Modes of Condensation……Page 926
14.1.3 Thermal Resistances……Page 927
14.2.1 Approximate Analysis……Page 929
14.2.2 Boundary Layer Analysis……Page 935
14.3.1 Single Tube……Page 940
14.3.2 Tube Bundles……Page 942
14.4.1 Single Tube……Page 947
14.5.2 Inclined Upward-Facing Plates……Page 950
14.5.3 Horizontal Upward-Facing Plates and Disks……Page 951
14.5.5 Horizontal and Inclined Downward-Facing Plates and Disks……Page 952
14.5.6 General Axisymmetric Bodies……Page 953
14.5.8 Vertically Oriented Helical Coils……Page 954
14.6 Condensation with Rotation……Page 955
14.8.1 Flow Regimes……Page 956
14.8.2 Vertical Tubes……Page 958
14.8.3 Horizontal Tubes……Page 959
14.8.4 Pressure Losses……Page 963
14.8.5 Condenser Modeling……Page 965
14.9.1 Condensation on Drops (Spray Condensers)……Page 966
14.9.2 Condensation on Jets and Sheets……Page 967
14.9.3 Condensation on Films……Page 968
14.9.4 Condensation on Vapor Bubbles……Page 969
14.10 Condensation of Mixtures……Page 970
14.10.1 Equilibrium Methods……Page 971
14.10.2 Nonequilibrium Methods……Page 973
14.11 Nomenclature……Page 974
14.12 References……Page 979
15.1.1 General Considerations……Page 989
15.1.3 Structure of this Chapter……Page 990
15.2.1 Single-Component Systems……Page 991
15.2.2 Multicomponent Systems……Page 993
15.3.1 Equilibrium of a Bubble……Page 994
15.3.2 Homogeneous Nucleation……Page 995
15.3.3 Heterogeneous Nucleation……Page 997
15.3.4 Bubble Growth……Page 1006
15.3.5 Bubble Release Diameter and Frequency……Page 1014
15.4 Pool Boiling……Page 1018
15.4.1 Pool Boiling Heat Transfer before the Critical Heat Flux Limit……Page 1019
15.4.2 The Critical Heat Flux Limit in Pool Boiling……Page 1044
15.4.3 Heat Transfer beyond the Critical Heat Flux Limit in Pool Boiling……Page 1054
15.5 Cross Flow Boiling……Page 1063
15.5.1 Heat Transfer below the Critical Heat Flux Limit in Cross Flow Boiling……Page 1065
15.5.2 Critical Heat Flux in Cross Flow Boiling……Page 1069
15.5.3 Heat Transfer beyond the Critical Heat Flux Limit in Cross Flow Boiling……Page 1071
15.6 Forced Convective Boiling in Channels……Page 1072
15.6.1 Heat Transfer below the Critical Heat Flux Limit in Forced Convective Boiling in Channels……Page 1077
15.6.2 Critical Heat Flux in Forced Convective Boiling in Channels……Page 1100
15.6.3 Heat Transfer beyond the Critical Heat Flux Limit in Forced Convective Boiling in Channels……Page 1120
15.7 Thin Film Heat Transfer……Page 1125
15.7.1 Evaporating Liquid Films: Laminar Flow……Page 1126
15.7.3 Evaporating Liquid Films: Multicomponent Mixtures……Page 1128
15.7.5 Heat Transfer to a Nonevaporating (Subcooled) Falling Liquid Film……Page 1129
15.7.6 Film Breakdown……Page 1130
15.8 Rewetting of Hot Surfaces……Page 1131
15.9 Nomenclature……Page 1133
15.10 References……Page 1140
16.1 Introduction……Page 1157
16.2.1 Basic Concepts and Definitions……Page 1158
16.2.2 Standards and Temperature Scales……Page 1159
16.2.3 Sensors……Page 1164
16.2.4 Local Temperature Measurement……Page 1207
16.2.5 Calibration of Thermometers and Assurance of Measurements……Page 1210
16.3.1 Basic Principles……Page 1214
16.3.2 Methods……Page 1215
16.3.3 Thermal Resistance Gauges……Page 1216
16.4.1 Introduction……Page 1220
16.4.2 Sublimation Technique……Page 1221
16.4.3 Electrochemical Technique……Page 1222
16.6 Nomenclature……Page 1224
16.8 References……Page 1227
17.1 Introduction……Page 1234
17.2.1 Shell-and-Tube Exchangers……Page 1235
17.2.2 Newer Designs of Shell-and-Tube Exchangers……Page 1247
17.2.3 Compact Heat Exchangers……Page 1248
17.3 Exchanger Heat Transfer and Pressure Drop Analysis……Page 1258
17.3.1 Heat Transfer Analysis……Page 1260
17.3.2 The e-NTU, P-NTU, and MTD Methods……Page 1263
17.3.3 Fin Efficiency and Extended Surface Efficiency……Page 1267
17.3.4 Extensions of the Basic Recuperator Thermal Design Theory……Page 1280
17.3.5 e-NTUo and A-FI Methods for Regenerators……Page 1288
17.3.6 Single-Phase Pressure Drop Analysis……Page 1295
17.4 Single-Phase Surface Basic Heat Transfer and Flow Friction Characteristics……Page 1299
17.4.1 Experimental Methods……Page 1302
17.4.2 Analytical Solutions……Page 1309
17.4.3 Experimental Correlations……Page 1317
17.4.4 Influence of Temperature-Dependent Fluid Properties……Page 1321
17.5.1 Flow Patterns……Page 1322
17.5.2 Two-Phase Pressure Drop Correlations……Page 1328
17.5.3 Heat Transfer Correlations for Condensation……Page 1330
17.5.4 Heat Transfer Correlations for Boiling……Page 1336
17.6.2 Extended Surface Heat Exchangers……Page 1338
17.6.3 Shell-and-Tube Heat Exchangers……Page 1344
17.7.1 Condensers……Page 1353
17.7.2 Vaporizers……Page 1358
17.8.1 Tube Vibration……Page 1360
17.8.2 Acoustic Vibrations……Page 1361
17.9.1 Geometry-Induced Flow Maldistribution……Page 1369
17.9.2 Flow Maldistribution Induced by Operating Conditions……Page 1374
17.9.3 Mitigation of Flow Maldistribution……Page 1378
17.10 Fouling and Corrosion……Page 1379
17.10.1 Fouling……Page 1380
17.10.2 Corrosion……Page 1385
17.11 Concluding Remarks……Page 1386
17.12 Nomenclature……Page 1387
17.13 References……Page 1395
18.1 Introduction……Page 1403
18.2.2 Conduction Heat Transfer in Beam-Irradiated Materials……Page 1404
18.2.3 Conduction Heat Transfer with Thermomechanical Effects……Page 1411
18.2.4 Single-Phase Convective Heat Transfer……Page 1414
18.2.5 Two-Phase Convective Heat Transfer……Page 1428
18.2.6 Radiation Heat Transfer……Page 1437
18.3.1 Heating of a Load Inside Industrial Furnaces……Page 1445
18.3.2 Quenching……Page 1453
18.3.3 Processing of Several Advanced Materials……Page 1459
18.5 Nomenclature……Page 1463
18.6 References……Page 1467
A……Page 1477
B……Page 1478
C……Page 1479
D……Page 1481
E……Page 1482
F……Page 1484
H……Page 1485
I……Page 1486
L……Page 1487
M……Page 1488
N……Page 1489
P……Page 1490
R……Page 1492
S……Page 1494
T……Page 1496
V……Page 1498
W……Page 1499
Z……Page 1500
Reviews
There are no reviews yet.