Roger L Brockenbrough, Frederick S. Merritt0070087822, 9780070087828
Find a wealth of practical techniques for cost-effectively designing steel structures from buildings to bridges in Structural Steel Designer’s Handbook by Roger L. Brockenbrough and Frederick S. Merritt The Handbook’s integrated approach gives you immediately useful information about: *steel as a material – how it’s fabricated and erected *how to analyze a structure to determine internal forces and moments from dead, live, and seismic loads how to make detailed design calculations to withstand those forces
This new third edition introduces you to the latest developments in seismic design, including more ductile connections, and high performance steels…offers an expanded treatment of welding….helps you understand design requirements for hollow structural sections and for cold-formed steel members….and explores numerous design examples. You get examples for both Load and Resistance Factor Design (LRFD) and Allowable Stress Design (ASD).
Table of contents :
Front Matter……Page 1
Contributors……Page 4
Factors for Conversion to SI Units of Measurement……Page 6
Table of Contents……Page 0
Preface to the Third Edition……Page 7
Preface to the Second Edition……Page 8
Table of Contents……Page 10
1.1 Structural Steel Shapes and Plates……Page 19
1.2 Steel-Quality Designations……Page 24
1.3 Relative Cost of Structural Steels……Page 26
1.4 Steel Sheet and Strip for Structural Applications……Page 28
1.6 Steel Cable for Structural Applications……Page 31
1.7 Tensile Properties……Page 32
1.8 Properties in Shear……Page 34
1.9 Hardness Tests……Page 35
1.10 Effect of Cold Work on Tensile Properties……Page 36
1.11 Effect of Strain Rate on Tensile Properties……Page 37
1.12 Effect of Elevated Temperatures on Tensile Properties……Page 38
1.13 Fatigue……Page 40
1.14 Brittle Fracture……Page 41
1.15 Residual Stresses……Page 44
1.17 Welded Splices in Heavy Sections……Page 46
1.19 Variations in Mechanical Properties……Page 47
1.20 Changes in Carbon Steels on Heating and Cooling……Page 48
1.22 Annealing and Normalizing……Page 50
1.23 Effects of Chemistry on Steel Properties……Page 51
1.24 Steelmaking Methods……Page 53
1.25 Casting and Hot Rolling……Page 54
1.27 Effects of Welding……Page 57
1.28 Effects of Thermal Cutting……Page 58
2.1 Shop Detail Drawings……Page 59
2.2 Cutting, Shearing, and Sawing……Page 61
2.4 CNC Machines……Page 62
2.6 Welding……Page 63
2.7 Camber……Page 66
2.8 Shop Preassembly……Page 67
2.9 Rolled Sections……Page 69
2.10 Built-Up Sections……Page 70
2.11 Cleaning and Painting……Page 73
2.12 Fabrication Tolerances……Page 74
2.13 Erection Equipment……Page 75
2.14 Erection Methods for Buildings……Page 78
2.15 Erection Procedure for Bridges……Page 81
2.16 Field Tolerances……Page 83
2.17 Safety Concerns……Page 85
Structural Mechanics – Statics……Page 86
3.2 Principles of Forces……Page 87
3.3 Moments of Forces……Page 90
3.4 Equations of Equilibrium……Page 91
3.5 Frictional Forces……Page 93
3.6 Kinematics……Page 95
3.7 Kinetics……Page 96
3.8 Stress-Strain Diagrams……Page 98
3.9 Components of Stress and Strain……Page 99
3.10 Stress-Strain Relationships……Page 102
3.11 Principal Stresses and Maximum Shear Stress……Page 103
3.12 Mohr’s Circle……Page 105
3.13 Types of Structural Members and Supports……Page 106
3.14 Axial-Force Members……Page 107
3.15 Members Subjected to Torsion……Page 109
3.16 Bending Stresses and Strains in Beams……Page 110
3.17 Shear Stresses in Beams……Page 114
3.18 Shear, Moment, and Deformation Relationships in Beams……Page 119
3.19 Shear Deflections in Beams……Page 130
3.20 Members Subjected to Combined Forces……Page 131
3.21 Unsymmetrical Bending……Page 133
3.22 Work of External Forces……Page 135
3.23 Virtual Work and Strain Energy……Page 136
3.24 Castigliano’s Theorems……Page 141
3.25 Reciprocal Theorems……Page 142
3.26 Types of Loads……Page 144
3.27 Commonly Used Structural Systems……Page 145
3.28 Determinacy and Geometric Stability……Page 147
3.29 Calculation of Reactions in Statically Determinate Systems……Page 148
3.30 Forces in Statically Determinate Trusses……Page 149
3.31 Deflections of Statically Determinate Trusses……Page 151
3.32 Forces in Statically Determinate Beams and Frames……Page 153
3.33 Deformations in Beams……Page 154
3.34 Methods for Analysis of Statically Indeterminate Systems……Page 158
3.35 Force Method (Method of Consistent Deflections)……Page 159
3.36 Displacement Methods……Page 161
3.37 Slope-Deflection Method……Page 163
3.38 Moment-Distribution Method……Page 166
3.39 Matrix Stiffness Method……Page 169
3.40 Influence Lines……Page 174
3.41 Elastic Flexural Buckling of Columns……Page 178
3.42 Elastic Lateral Buckling of Beams……Page 181
3.43 Elastic Flexural Buckling of Frames……Page 183
3.45 Comparisons of Elastic and Inelastic Analyses……Page 184
3.46 General Second-Order Effects……Page 186
3.47 Approximate Amplification Factors for Second-Order Effects……Page 188
3.49 General Material Nonlinear Effects……Page 190
3.50 Classical Methods of Plastic Analysis……Page 194
3.52 General Concepts of Structural Dynamics……Page 199
3.53 Vibration of Single-Degree-of-Freedom Systems……Page 201
3.55 Repeated Loads……Page 203
4.1 Three-Hinged Arches……Page 204
4.2 Two-Hinged Arches……Page 206
4.3 Fixed Arches……Page 208
4.4 Stresses in Arch Ribs……Page 210
4.5 Plate Domes……Page 211
4.6 Ribbed Domes……Page 214
4.7 Ribbed and Hooped Domes……Page 222
4.8 Schwedler Domes……Page 225
4.9 Simple Suspension Cables……Page 226
4.10 Cable Suspension Systems……Page 232
4.11 Plane-Grid Frameworks……Page 237
4.12 Folded Plates……Page 245
4.13 Orthotropic Plates……Page 251
5.1 Limitations on Use of Fasteners and Welds……Page 265
5.3 High-Strength Bolts, Nuts, and Washers……Page 266
5.5 Welded Studs……Page 269
5.6 Pins……Page 271
5.7 Fastener Diameters……Page 274
5.8 Fastener Holes……Page 275
5.9 Minimum Number of Fasteners……Page 276
5.11 Fastener Spacing……Page 277
5.12 Edge Distance of Fasteners……Page 278
5.13 Fillers……Page 280
5.14 Installation of Fasteners……Page 281
Welds……Page 283
5.15 Welding Materials……Page 284
5.16 Types of Welds……Page 285
5.17 Standard Welding Symbols……Page 289
5.18 Welding Positions……Page 294
5.19 Limitations on Fillet-Weld Dimensions……Page 295
5.21 Welding Procedures……Page 297
5.22 Weld Quality……Page 300
Design of Connections……Page 302
5.25 Hanger Connections……Page 303
5.26 Tension Splices……Page 311
5.27 Compression Splices……Page 314
5.28 Column Base Plates……Page 318
5.29 Beam Bearing Plates……Page 324
5.30 Shear Splices……Page 326
5.31 Bracket Connections……Page 331
5.32 Connections for Simple Beams……Page 341
5.33 Moment Connections……Page 350
5.34 Beams Seated Atop Supports……Page 359
5.35 Truss Connections……Page 360
5.36 Connections for Bracing……Page 362
5.37 Crane-Girder Connections……Page 371
6.1 Building Codes……Page 374
6.4 Building Occupancy Loads……Page 375
6.5 Roof Loads……Page 382
6.6 Wind Loads……Page 383
6.7 Seismic Loads……Page 394
6.9 Crane-Runway Loads……Page 399
6.11 Combined Loads……Page 401
6.12 ASD and LRFD Specifications……Page 402
6.13 Axial Tension……Page 403
6.14 Shear……Page 407
6.15 Combined Tension and Shear……Page 413
6.16 Compression……Page 414
6.17 Bending Strength……Page 418
6.19 Combined Bending and Compression……Page 421
6.20 Combined Bending and Tension……Page 423
6.22 Fatigue Loading……Page 424
6.23 Local Plate Buckling……Page 435
6.25 Design Parameters for Rolled Beams and Plate Girders……Page 437
6.26 Criteria for Composite Construction……Page 440
6.27 Serviceability……Page 447
6.28 Built-Up Compression Members……Page 449
6.29 Built-Up Tension Members……Page 450
6.30 Plastic Design……Page 451
6.31 Hollow Structural Sections……Page 452
6.33 Fire Protection……Page 458
7.1 Tension Members……Page 474
7.2 Comparative Designs of Double-Angle Hanger……Page 476
7.3 Example – LRFD for Wide-Flange Truss Members……Page 477
7.4 Compression Members……Page 478
7.5 Example – LRFD for Steel Pipe in Axial Compression……Page 479
7.6 Comparative Designs of Wide-Flange Section with Axial Compression……Page 480
7.7 Example – LRFD for Double Angles with Axial Compression……Page 481
7.8 Steel Beams……Page 483
7.9 Comparative Designs of Single-Span Floorbeam……Page 484
7.10 Example – LRFD for Floorbeam with Unbraced Top Flange……Page 487
7.11 Example – LRFD for Floorbeam with Overhang……Page 489
7.12 Composite Beams……Page 491
7.13 LRFD for Composite Beam with Uniform Loads……Page 493
7.14 Example – LRFD for Composite Beam with Concentrated Loads and End Moments……Page 501
7.15 Combined Axial Load and Biaxial Bending……Page 505
7.16 Example – LRFD for Wide-Flange Column in a Multistory Rigid Frame……Page 506
7.17 Base Plate Design……Page 510
7.18 Example – LRFD of Column Base Plate……Page 512
8.1 Concrete Fill on Metal Deck……Page 513
8.2 Precast-Concrete Plank……Page 520
Roof Decks……Page 521
8.4 Metal Roof Deck……Page 522
8.6 Wood-Fiber Planks……Page 523
Floor Framing……Page 525
8.8 Rolled Shapes……Page 526
8.9 Open-Web Joists……Page 529
8.11 Trusses……Page 530
8.12 Stub-Girders……Page 531
8.14 Castellated Beams……Page 533
8.17 Fire Protection……Page 537
8.18 Vibrations……Page 540
8.20 Space Frames……Page 541
8.21 Arched Roofs……Page 542
8.22 Dome Roofs……Page 543
8.23 Cable Structures……Page 545
9.1 Description of Wind Forces……Page 548
9.2 Determination of Wind Loads……Page 551
9.3 Seismic Loads in Model Codes……Page 556
9.4 Equivalent Static Forces for Seismic Design……Page 557
9.5 Dynamic Method of Seismic Load Distribution……Page 561
9.6 Structural Steel Systems for Seismic Design……Page 564
9.7 Seismic-Design Limitations on Steel Frames……Page 569
9.8 Forces in Frames Subjected to Lateral Loads……Page 580
9.9 Member and Connection Design for Lateral Loads……Page 585
10.1 Design Specifications and Materials……Page 590
10.2 Manufacturing Methods and Effects……Page 591
10.3 Nominal Loads……Page 593
10.4 Design Methods……Page 594
10.6 Effective Width Concept……Page 596
10.8 Effective Widths of Stiffened Elements……Page 600
10.10 Effective Widths of Uniformly Compressed Elements with Edge Stiffener……Page 603
10.12 Flexural Members……Page 605
10.13 Concentrically Loaded Compression Members……Page 614
10.15 Combined Compressive Axial Load and Bending……Page 616
10.17 Welded Connections……Page 619
10.18 Bolted Connections……Page 623
10.19 Screw Connections……Page 626
10.21 Wall Stud Assemblies……Page 630
10.22 Example of Effective Section Calculation……Page 631
10.23 Example of Bending Strength Calculation……Page 634
11.1 Standard Specifications……Page 636
11.3 Primary Design Considerations……Page 637
11.4 Highway Design Loadings……Page 639
11.5 Load Combinations and Effects……Page 648
11.6 Nominal Resistance for LRFD……Page 654
11.7 Distribution of Loads through Decks……Page 655
11.8 Basic Allowable Stresses for Bridges……Page 659
11.9 Fracture Control……Page 664
11.10 Repetitive Loadings……Page 665
11.11 Detailing for Earthquakes……Page 670
11.12 Detailing for Buckling……Page 671
11.13 Criteria for Built-Up Tension Members……Page 680
11.14 Criteria for Built-Up Compression Members……Page 681
11.15 Plate Girders and Cover-Plated Rolled Beams……Page 683
11.16 Composite Construction with I Girders……Page 685
11.17 Cost-Effective Plate-Girder Designs……Page 689
11.18 Box Girders……Page 691
11.19 Hybrid Girders……Page 695
11.20 Orthotropic-Deck Bridges……Page 696
11.22 Bearings……Page 698
11.23 Detailing for Weldability……Page 702
11.25 Bridge Decks……Page 704
11.26 Elimination of Expansion Joints in Highway Bridges……Page 707
11.27 Bridge Steels and Corrosion Protection……Page 709
11.29 Inspectability……Page 712
11.30 Reference Materials……Page 713
11.33 Owner’s Concerns……Page 714
11.34 Design Considerations……Page 715
11.35 Design Loadings……Page 716
11.36 Composite Steel and Concrete Spans……Page 724
11.37 Basic Allowable Stresses……Page 725
11.38 Fatigue Design……Page 729
11.39 Fracture Critical Members……Page 731
11.41 General Design Provisions……Page 732
11.42 Compression Members……Page 734
11.44 Members Stressed Primarily in Bending……Page 735
11.45 Other Considerations……Page 739
12.1 Characteristics of Beam Bridges……Page 741
12.2 Example – Allowable-Stress Design of Composite, Rolled-Beam Stringer Bridge……Page 745
12.3 Characteristics of Plate-Girder Stringer Bridges……Page 760
12.4 Example – Allowable-Stress Design of Composite, Plate-Girder Bridge……Page 763
12.5 Example – Load-Factor Design of Composite Plate-Girder Bridge……Page 774
12.6 Characteristics of Curved Girder Bridges……Page 788
12.7 Example – Allowable-Stress Design of Curved Stringer Bridge……Page 796
12.8 Deck Plate-Girder Bridges with Floorbeams……Page 809
12.9 Example – Allowable-Stress Design of Deck Plate-Girder Bridge with Floorbeams……Page 810
12.10 Through Plate-Girder Bridges with Floorbeams……Page 844
12.11 Example – Allowable-Stress Design of a Through Plate-Girder Bridge……Page 845
12.12 Composite Box-Girder Bridges……Page 854
12.13 Example – Allowable-Stress Design of a Composite Box-Girder Bridge……Page 858
12.14 Orthotropic-Plate Girder Bridges……Page 868
12.15 Example – Design of an Orthotropic-Plate Box-Girder Bridge……Page 870
12.16 Continuous-Beam Bridges……Page 893
12.17 Allowable-Stress Design of Bridge with Continuous, Composite Stringers……Page 894
12.18 Example – Load and Resistance Factor Design (LRFD) of Composite Plate-Girder Bridge……Page 909
13. Truss Bridges……Page 932
13.2 Truss Components……Page 933
13.3 Types of Trusses……Page 936
13.4 Bridge Layout……Page 938
13.5 Deck Design……Page 939
13.6 Lateral Bracing, Portals, and Sway Frames……Page 940
13.8 Truss Design Procedure……Page 941
13.9 Truss Member Details……Page 949
13.10 Member and Joint Design Examples – LFD and SLD……Page 952
13.11 Member Design Example – LRFD……Page 958
13.12 Truss Joint Design Procedure……Page 966
13.13 Example – Load-Factor Design of Truss Joint……Page 968
13.14 Example – Service-Load Design of Truss Joint……Page 975
13.15 Skewed Bridges……Page 980
13.16 Truss Bridges on Curves……Page 981
13.18 Continuous Trusses……Page 982
14. Arch Bridges……Page 983
14.2 Arch Forms……Page 984
14.3 Selection of Arch Type and Form……Page 985
14.4 Comparison of Arch with Other Bridge Types……Page 987
14.5 Erection of Arch Bridges……Page 988
14.6 Design of Arch Ribs and Ties……Page 989
14.7 Design of Other Elements……Page 992
14.8 Examples of Arch Bridges……Page 993
14.9 Guidelines for Preliminary Designs and Estimates……Page 1026
14.10 Buckling Considerations for Arches……Page 1028
14.11 Example – Design of Tied-Arch Bridge……Page 1029
15.1 Evolution of Cable-Suspended Bridges……Page 1051
15.2 Classification of Cable-Suspended Bridges……Page 1055
15.3 Classification and Characteristics of Suspension Bridges……Page 1057
15.4 Classification and Characteristics of Cable-Stayed Bridges……Page 1066
15.5 Classification of Bridges by Span……Page 1073
15.6 Need for Longer Spans……Page 1074
15.7 Population Demographics of Suspension Bridges……Page 1079
15.9 Technological Limitations to Future Development……Page 1080
15.10 Cable-Suspended Bridges for Rail Loading……Page 1081
15.11 Specifications and Loadings for Cable-Suspended Bridges……Page 1082
15.12 Cables……Page 1085
15.13 Cable Saddles, Anchorages, and Connections……Page 1091
15.14 Corrosion Protection of Cables……Page 1095
15.15 Statics of Cables……Page 1102
15.16 Suspension-Bridge Analysis……Page 1103
15.17 Preliminary Suspension-Bridge Design……Page 1118
15.18 Self-Anchored Suspension Bridges……Page 1124
15.19 Cable-Stayed Bridge Analysis……Page 1125
15.20 Preliminary Design of Cable-Stayed Bridges……Page 1129
15.21 Aerodynamic Analysis of Cable-Suspended Bridges……Page 1136
15.22 Seismic Analysis of Cable-Suspended Structures……Page 1146
15.23 Erection of Cable-Suspended Bridges……Page 1147
A……Page 1151
B……Page 1153
C……Page 1163
D……Page 1170
F……Page 1172
G……Page 1176
I……Page 1177
L……Page 1178
M……Page 1180
P……Page 1181
R……Page 1184
S……Page 1185
T……Page 1194
W……Page 1198
Y……Page 1201
Reviews
There are no reviews yet.