Photo-induced metastability in amorphous semiconductors

Free Download

Authors:

ISBN: 3527403701, 9783527403707

Size: 7 MB (6922479 bytes)

Pages: 439/439

File format:

Language:

Publishing Year:

Category:

Alexander V. Kolobov3527403701, 9783527403707

A review summarising the current state of research in the field, bridging the gaps in the existing literature. All the chapters are written by world leaders in research and development and guide readers through the details of photo-induced metastability and the results of the latest experiments and simulations not found in standard monographs on this topic. A useful reference not only for graduates but also for scientific and industrial researchers. With a foreword of Kazunobu Tanaka

Table of contents :
Photo-Induced Metastability in Amorphous Semiconductors……Page 4
Preface……Page 10
Introduction……Page 11
Contents……Page 14
List of Contributors……Page 24
1.1.1 Ordered State……Page 28
1.2.2 Short-Range Order……Page 29
1.2.3 Medium-Range Order……Page 30
1.3.1 Tetrahedrally Bonded Amorphous Semiconductors……Page 31
1.3.2 Amorphous Non-Tetrahedrally Bonded Semiconductors……Page 34
1.4 Defects in Non-Crystalline Solids……Page 37
1.4.1 Local Defects……Page 38
1.4.2 The Diffuse or Collective Defects (Extended Defects)……Page 39
1.4.3 Chemical Defects……Page 40
1.4.4 Electronic-Structural Defects……Page 41
1.5.1 Electronic States in Tetrahedrally Bonded Semiconductors……Page 43
1.5.2 Electronic States in Non-Tetrahedrally Bonded Semiconductors……Page 45
References……Page 47
2.1 Introduction……Page 50
2.2 Photo-Induced Effects in Amorphous and Glassy Chalcogenides……Page 51
2.2.1 Irreversible Photo-Induced Changes……Page 53
2.2.2 Reversible Photo-Induced Changes……Page 59
2.3 Applications……Page 64
References……Page 66
3.1 Introduction……Page 72
3.2 Short-Range-Order (SRO) Effects……Page 73
3.3 Medium-Range-Order (MRO) Effects……Page 78
3.4 Long-Range-Order (LRO) Effects……Page 80
References……Page 82
4.1 Introduction……Page 85
4.2 Light-Induced Metastable Defect (LIMD) Creation……Page 86
4.3 Photostructural Changes……Page 89
4.4 Discussion……Page 92
4.5 Conclusions……Page 94
References……Page 95
5.2 Chalcogenide Glass……Page 96
5.3 Photo-Induced Phenomena……Page 97
5.4.1 Background……Page 99
5.4.2 Photo-Induced Bragg Grating……Page 100
5.4.4 Photo-Induced Fluidity……Page 102
5.4.5 Giant Photoexpansion……Page 104
5.4.6 Spectral Light-Intensity Dependence……Page 105
5.5.1 Temperature Rise……Page 106
5.5.3 Gap States and Microscopic Structure……Page 107
5.5.4 Refractive-Index Change……Page 108
5.5.5 Fluidity and Volume Expansion……Page 109
References……Page 113
6.1 Introduction……Page 118
6.2 Samples and Experimental Procedures……Page 119
6.3.1 Above-Bandgap Light Excitation……Page 121
6.3.2 Sub-Bandgap Light Excitation……Page 125
6.3.3 Super-Bandgap Light Excitation……Page 127
6.4.1 Polarization-Dependent Photocrystallization……Page 129
6.4.2 Polarization-Dependent Photodoping of ChGS Films by Silver……Page 130
6.4.3 Photo-Induced Anisotropy of Photoconductivity……Page 131
6.5 Conclusion……Page 132
References……Page 133
7.1 Introduction……Page 136
7.2 Experimental……Page 137
7.3.1 Polarization Dependence……Page 138
7.3.2 Light-Intensity Dependence……Page 139
7.3.3 Wavelength Dependence……Page 140
7.4 Discussion……Page 142
References……Page 144
8.1 Preamble……Page 146
8.2 The Photo-Induced Fluidity Effect: A Synopsis……Page 147
8.3.1 High-Frequency Modes: Intramolecular Vibrations……Page 148
8.3.2 Medium Range Structure: the Boson Peak Region……Page 150
8.4 Temperature Dependence of the Photo-Induced Fluidity Effect……Page 151
8.5 PiF in Non-Stoichiometric As(x)S(100–x) Glasses……Page 155
8.5.1 The Role of Illumination-to-Bandgap Energy Ratio in PiF……Page 156
8.6 Microscopic Models Related to PiF……Page 158
8.6.1 Intramolecular Structural Models for PiF……Page 159
8.6.2 Implications of Intermolecular Structural Modifications……Page 160
8.7 Summary and Outlook……Page 162
References……Page 163
9.1 Introduction……Page 165
9.2 Experimental Technique……Page 166
9.3.1 Experimental Results on Laser-Induced Birefringence and Dichroism……Page 167
9.3.2 Theoretical Results on Laser-Induced Optical Anisotropy……Page 170
9.3.3 Comparison of the Model with the Experiments……Page 175
9.4 Optical Bistability and Light-Induced Transmittance Oscillations in Amorphous Semiconductor Films……Page 176
9.4.1 Experimental Results……Page 177
9.4.2 Theoretical Considerations……Page 179
9.5 Conclusion……Page 184
References……Page 185
10.1 Introduction……Page 187
10.2 Preparation of Bulk Glasses and Thin Films……Page 188
10.3.1 Kinetic Measurement Methods and Kinetics of OIDD Process……Page 189
10.3.2 Kinetic Curves of the OIDD Process……Page 190
10.3.3 Mechanism of the OIDD Process……Page 191
10.3.4 Location of Actinic Light Absorption During OIDD……Page 193
10.4 Reaction Products and Their Properties……Page 195
10.4.1 Optical Properties……Page 196
10.4.2 Mechanical and Thermal Properties……Page 198
10.4.3 Structure……Page 200
References……Page 204
11.1 Introduction……Page 209
11.2 Photodeposited Ag Particles……Page 211
11.3 Compositional Dependence of Photodeposition……Page 212
11.4 Effect of Light Intensity, Photon Energy and Temperature……Page 215
11.5 Erasing, Rewriting and Fixing of Ag Patterns……Page 216
11.6 Mechanism of Photodeposition……Page 218
11.6.1 Photoelectro-Ionic Processes……Page 219
11.6.2 Thermodynamic Aspect……Page 222
11.7 Other Observations……Page 223
11.8 Concluding Remarks……Page 224
References……Page 225
12.1 Introduction……Page 226
12.2.2 Measurement Set-Up……Page 228
12.3.1 Transient Absorption Measurements……Page 229
12.3.3 What is a Short-Living Product?……Page 231
12.3.4 What is a Long-Living Product?……Page 232
12.3.5 Temperature Variation of Relaxation Time……Page 234
12.3.6 Photo-Induced Polymerization as a Cooperative Phenomenon……Page 235
12.4.1 Photo-Induced Bond Breaking in Isolated S(8) Ring……Page 236
12.4.3 Relaxation Process. A New Candidate for Long-Living Product……Page 238
12.5.1 Transient DC Conductivity Measurements……Page 239
12.5.2 Maximum Voltage……Page 241
12.6.1 Bond Breaking in an Infinite Selenium Chain……Page 242
12.7 Final Remarks……Page 243
References……Page 244
13.1 Introduction……Page 247
13.2.1 Defect Creation at Low Exposure Temperatures and Their Thermal Stability. Effect of High Electric Fields on Defect Creation……Page 249
13.2.2 Defect Creation at Very High Photocarrier Generation Rates……Page 252
13.2.3 Influence Between Groups of Defects with Different Stability……Page 255
13.3 Effect of H-Content and Microstructure. Defect Precursors. Structural Changes……Page 256
13.4 Light-Induced Degradation of Photoconductivity……Page 258
13.4.1 Photodegradation of Solar Cells……Page 263
13.5 Summary……Page 266
References……Page 267
14.1 Introduction……Page 271
14.2 Experimental Details……Page 272
14.3 Fundamental Properties of Photo-Induced Structural Metastability……Page 274
14.4.1 Effect of Deposition Conditions on Photo-Induced Structural Metastability……Page 278
14.4.2 Effect of Cyanide Treatment on Photo-Induced Structural Metastability……Page 283
References……Page 284
15.1 Introduction……Page 287
15.2 Method……Page 288
15.2.1 Making the Structural Model of the Glass……Page 289
15.2.2 Density Functional Theory and Molecular Dynamics……Page 290
15.2.3 Photostructural Change from Molecular Dynamics……Page 292
15.3 Applications……Page 293
15.3.1 Amorphous Silicon……Page 294
15.3.2 Amorphous Selenium……Page 295
15.3.3 As(2)Se(3)……Page 299
References……Page 303
16.1 Introduction……Page 306
16.2 The Soft-Mode Dynamics of Glasses……Page 308
16.3 Negative-U Centers in Glassy Semiconductors……Page 311
16.4.1 Photostructural Changes as Metastable “Defects” Due to Excited Negative-U Centers……Page 313
16.4.2 Kinetics and Transition Probabilities……Page 317
16.5.1 Are Pronounced Metastable Transformations Available in Atomic Tunneling Dynamics?……Page 319
16.5.2 Can Pronounced Metastable Transformations be Available in the HFD Related to Soft Modes?……Page 320
16.7 Conclusions……Page 322
References……Page 323
17.1 Introduction……Page 326
17.2 What Kind of Bond is Needed?……Page 327
17.3 A Quantum-Chemistry Study: HVB versus VAP……Page 328
17.4 General Model of PSC and Related Phenomena……Page 329
17.5 Self-Organization of HVB: a Bond-Wave Model……Page 332
17.6 Conclusions……Page 334
References……Page 335
18.2.1 Phase-Change Optical Memory Phenomena……Page 337
18.2.3 Phase-Change Overwriting Method……Page 338
18.3.2 Phase-Change Optical Disc Materials for Optical Disc Memory……Page 340
18.4.2 Million Overwrite Cycle Phase Change Optical Disc [6]……Page 343
18.5 Thin Substrate Technology of Phase Change Optical Disc Promotes DVD……Page 345
18.6.2 Dual-Layer Recording……Page 346
18.6.4 Near-Field Recording and Super-RENS Recording……Page 347
18.6.6 Combination Technology……Page 348
18.7.1 Ultra Short Pulse (Femtosecond) Laser Recording……Page 349
18.8 Conclusion……Page 350
References……Page 351
19.1 Introduction……Page 354
19.2 Optical Near-Field and Surface Plasmons……Page 355
19.3 GeSbTe Glass and its Characteristics for NFR……Page 357
19.4 NFR Optical Disc Using GeSbTe Glass……Page 360
19.5 Summary……Page 363
References……Page 364
20.1 Introduction……Page 365
20.2 Holographic Data-Storage Media……Page 368
20.3.2 Implementation……Page 369
20.3.3 Performance……Page 371
20.4 Diffraction of Light by a Volume Grating……Page 372
20.5 Testing the Holographic Data-Storage Potential of Chalcogenide Glasses……Page 378
20.6 Summary……Page 381
References……Page 382
21.2 Experimental Details……Page 384
21.3.1 Photo-Written Waveguides……Page 385
21.3.2 Power Dependence……Page 386
21.3.3 Guided Light Intensity Profiles……Page 387
21.4 Discussion……Page 389
21.5 Conclusions……Page 390
References……Page 391
22.2.1 The Basic Effect……Page 392
22.2.3 The Metal Concentration Profile……Page 393
22.3.1 High-Resolution Lithography……Page 395
22.3.2 IR Diffractive Optical Elements……Page 398
22.3.3 IR Optical Components……Page 401
22.3.4 Miscellaneous Applications……Page 403
22.4 Comparison of MPD and Photodarkening as Techniques for Producing Structures……Page 405
22.5 Conclusions……Page 406
References……Page 407
23.2 Chalcogenide Glasses for Near-Infrared (NIR) Optics……Page 410
23.3 Bulk Chalcogenide Glasses (ChG): Composition and Optical Properties……Page 411
23.4 Chalcogenide Thin Films and Comparison with Bulk Glass……Page 416
23.5.1 Raman Spectroscopy……Page 417
23.5.2 NIR Raman Spectroscopy of Bulk Chalcogenide Glasses……Page 419
23.5.3 NIR Waveguide and Micro-Raman Spectroscopy of Chalcogenide Films……Page 421
23.6 Photo-Induced Changes in Glassy Chalcogenides……Page 422
23.6.1 Exposure Sensitivity of Chalcogenide Glasses……Page 423
23.6.2 Photo-Induced Waveguides in Bulk ChG Materials……Page 424
23.6.3 Photo-Induced Changes in ChG Films……Page 426
23.6.4 Grating Fabrication in As(2)S(3) Glassy Films……Page 427
23.7 Conclusions and Outlook……Page 428
References……Page 429
Index……Page 434

Reviews

There are no reviews yet.

Be the first to review “Photo-induced metastability in amorphous semiconductors”
Shopping Cart
Scroll to Top