Leo Hollberg, Jim Bergquist, Mark Kasevich9789812813190, 9812813195
Table of contents :
CONTENTS……Page 14
PREFACE……Page 6
Degenerate Gases……Page 18
1. Introduction……Page 20
2. Experimental System and Procedure……Page 21
3. Earlier Results……Page 22
4. Inferring Vortex-Antivortex Pair Sizes……Page 23
References……Page 27
1. Introduction : disorder and ultracold atoms……Page 28
2.1. Expansion of a n interacting BEG’……Page 30
2.1.2. Non-vanishing disorder……Page 31
2.2. Scenario for the suppression of the transport of the BEG’ i n the presence of a speckle random potential……Page 32
2.2.1. Disorder-induced trapping in the core of the BEC……Page 33
2.2.2. Behavior in the wings of the BEC……Page 36
3. Relation to recent experiments……Page 37
Bibliography……Page 38
1. Introduction……Page 40
2. Quantum Noise Correlations……Page 41
2.2. Noise correlations for fermions – HBT type antibunching……Page 43
3.1. From the Hubbard model to an effective spin-spin interaction……Page 46
3.2. Detecting superexchange interactions……Page 48
4. Outlook……Page 49
References……Page 50
Precision Measurement and Fundamental Physics……Page 54
1. Introduction……Page 56
2. Underlying Theory……Page 57
3. Survey of EDM Experiments……Page 59
4.1. 4-cell Experiment……Page 61
4.3. The Ig9Hg Stark Interference Eflect……Page 65
References……Page 67
Quantum Information and Control I……Page 68
1. Introduction……Page 70
2. Experimental setup……Page 71
3. Ramsey spectroscopy techniques for quantum information processing……Page 72
4. Quantum information processing techniques for precision spectroscopy……Page 74
4.2. Spectroscopy with unentangled states of two atoms……Page 75
4.3. Measurement of a n electric quadrupole moment……Page 77
5 . Conclusion……Page 78
References……Page 79
1. Introduction……Page 80
2. Principle of experiment: atoms as clocks to read out the number of photons stored in a box……Page 81
3. A simple situation: counting single photons and detecting field quantum jumps……Page 84
4. Progressive field state collapse and stochastic evolution of the photon number……Page 85
5. Perspectives for the study of non-classical field states in one or two cavities……Page 87
References……Page 88
Ultra-fast Control and Spectroscopy……Page 90
Frequency-Comb- Assisted Mid-Infrared Spectroscopy P. de Natale, D. Mazzotti, G. Giusfredi, S. Bartulini, P. Cancio, P. Mudduloni, P. Malara, G. Gagliardi, I. Gulli and S. Borri……Page 92
1. Introduction……Page 93
2. DFGat 4pm……Page 95
3. QCL-based spectrometer……Page 98
4. 3-pm comb generation……Page 100
References……Page 102
Precision Measurement and Applications……Page 104
1. Introduction……Page 106
2. Determination of G by atom interferometry……Page 107
3. Precision gravity measurements at pm scale with laser-cooled Sr atoms in an optical lattice……Page 111
4.1. Geophysics applications……Page 114
4.2. Space applications……Page 115
Acknowledgments……Page 116
References……Page 117
Novel Spectroscopic Applications……Page 118
1. Introduction……Page 120
2. Variation of dimensionless fundamental constants: a and p……Page 121
3. Extension of the database of molecular hydrogen at high redshift……Page 122
4. Improving the laboratory accuracy of the Lyman and Werner lines……Page 124
5. A molecular fountain for precision studies and detection of A|i……Page 126
References……Page 127
Quantum Information and Control I1……Page 128
2.1. Canonical variables……Page 130
2.2. Teleportation of a quantum state of light onto atoms……Page 132
2.3. Single atom squeezing……Page 134
3. Dispersive measurements on dipole trapped cold Cs atoms……Page 135
3.2. Rabi Oscillations……Page 136
4.1. Gaussian states……Page 137
4.2. Non-Gaussian states……Page 138
5. Atom-Light interface with quantum degenerate atoms……Page 139
References……Page 141
Degenerate Fermi Gases……Page 142
1.1. Introduction and Motivation……Page 144
1.2. Not One, But Two Resonances……Page 145
2.1. Molecule Energy……Page 146
2.2. “Seeing” p-wave Molecules……Page 147
2.3. Creating p-wave Molecules……Page 149
2.4. Molecule Lifetimes……Page 151
2.5. Future Prospects……Page 152
References……Page 154
1. Introduction……Page 155
2.1. Treatment of the BCS state……Page 156
2.2. The Bragg formalism……Page 159
3. Results of Bragg scattering……Page 160
4.2. Analytic Model……Page 163
References……Page 165
Spectroscopy and Control of Atoms and Molecules……Page 168
1. Introduction……Page 170
2. Stark deceleration and trapping of Rydberg atoms……Page 173
3. Zeeman deceleration of hydrogen and deuterium……Page 178
References……Page 182
1 Basics of attosecond pulses production……Page 184
2 Confinement of HHG production at the leading edge of the driver pulse: towards tunable isolated attosecond pulse generation……Page 185
References……Page 190
Introduction……Page 192
1. Controlling atoms in optical conveyor belts……Page 193
1.1. Number-triggered loading of atoms……Page 194
1.3. Conveyor belts and optical high finesse cavities……Page 195
2.1. Bottle resonators – tunable micro cavities……Page 198
2.2. An “infinite” focus……Page 199
References……Page 200
Spectroscopy on the Small Scale……Page 202
1. Introduction……Page 204
2. Features of a CARS-microscope……Page 205
3. WIDE-FIELD CARS MICROSCOPY……Page 206
4. APPLICATIONS AND OUTLINE……Page 209
References……Page 210
1. Introduction……Page 212
2. Nanometer scale localized laser fields……Page 213
3. Atom nanopencil……Page 216
4. Atom pinhole camera……Page 217
5. Laser-Induced Quantum Adsorption of Atoms on a Surface……Page 219
References……Page 221
Pinhead Town Talk, Public Lecture and Mountainfilm……Page 222
2. Computers and technology……Page 224
3. Quantum bits, registers and gate operations……Page 225
4. Quantum computer with trapped ions……Page 228
5. Simple quantum computations……Page 229
7. Conclusion……Page 230
References……Page 231
Cold Atoms and Molecules I……Page 234
1. Introduction……Page 236
2. The concept of pump-dump photoassociation……Page 237
3. The role of the excited state potentials……Page 240
4. Engineering favourable potentials……Page 242
5. Conclusions……Page 243
References……Page 244
1. Introduction……Page 245
2. The Magnetic Film Atom Chip……Page 246
3. Spatially Resolved RF Spectroscopy to Probe Magnetic Field Topology……Page 247
4. Dynamic Splitting of a BEC in an Asymmetric Double Well……Page 249
5. Periodic Magnetic Lattices……Page 251
6. Realisation of a Permanent-Magnet Lattice for Ultracold Atoms……Page 254
References……Page 256
Cold Atoms and Molecules I1……Page 258
1. Introduction……Page 260
2. Helium level structure and relevant parameters……Page 261
3. The experimental apparatus……Page 262
4. Hanbury Brown and Twiss experiments……Page 265
5. Proposed metrology experiment……Page 269
References……Page 271
Single Atoms and Quantum Optics I……Page 274
Recent Progress on the Manipulation of Single Atoms in Optical Tweezers for Quantum Computing A. Browaeys, J. Beugnon, C. Tuchendler, H. Marion, A. Gaetan, Y. Miroshnychenko, B. Darquik, J. Dingjan, Y.R.P. Sortais, A.M. Lance, M. P.A. Jones, G. Messin……Page 276
1. Diffraction-limited optics for single-atom manipulation……Page 277
2. Single-atom quantum bit……Page 278
3. Transport and transfer of atomic qubits……Page 280
4. Towards conditional entanglement of two atoms……Page 283
5. Single atom as a single-photon source……Page 284
6. Interference of two photons emitted by two atoms……Page 285
References……Page 287
1. Introduction……Page 288
2. Magnetic atom chips……Page 291
3. Chips with optical micro-cavities……Page 292
3.1. Atom detection……Page 294
3.2. Noise suppression……Page 295
3.3. Photon generation……Page 296
4. Outlook……Page 297
References……Page 298
Single Atoms and Quantum Optics I1……Page 300
1. Introduction……Page 302
2.1. Photon blockade……Page 303
2.2. Control of the center-of-mass motion in cavity QED……Page 304
2.3. Reversible state transfer between light and a single trapped atom……Page 305
3. Cavity QED with microtoroidal resonators……Page 306
4. Quantum information with atomic ensembles……Page 308
References……Page 309
Optical Atomic Clocks……Page 312
Frequency Comparison of Al’ and Hg’ Optical Standards T. Rosenband, D.B. Hume, A. Brusch, L. Lorini, P.O. Schmidt, T.M. Fortier, J.E. Stalnaker, S.A. Diddams, N.R. Newbury, W.C. Swann, W.S. Oskay, K M Itano, D.J. Winelandand J. C. Bergquist……Page 314
Acknowledgements……Page 318
References……Page 319
1. Introduction……Page 320
2.1. Stable Optical Local Oscillator……Page 321
2.2. Optical Frequency Comb Clockwork and Precision Fiber Transfer……Page 322
3.1. Spectroscopy in the Magic Wavelength Lattice……Page 323
3.2. Nuclear Spin Effects……Page 324
3.3. Hz-Resolution Optical Spectroscopy……Page 325
4.1. Accuracy Evaluation (2006): Degenerate Sublevels……Page 326
4.2. Accuracy Evaluation: Optical Clock Comparison with Spin- Polarized Samples……Page 328
References……Page 330
Author Index……Page 334
Reviews
There are no reviews yet.