Sanjay Puri, Vinod Wadhawan9780849390654, 0849390656
Table of contents :
0849390656……Page 1
9065_c000……Page 2
KINETICS of PHASE TRANSITIONS……Page 3
Contents……Page 5
Preface……Page 6
Editors……Page 8
Contributors……Page 9
CONTENTS……Page 10
Table of Contents……Page 0
1.1 INTRODUCTION……Page 11
1.2.1 ISING MODEL AND ITS APPLICATIONS……Page 14
1.2.2 PHASE DIAGRAMS IN THE MEAN-FIELD APPROXIMATION……Page 15
1.3.1 INTRODUCTION……Page 18
1.3.2 THE SPIN-FLIP GLAUBER MODEL……Page 19
1.3.2.1 Mean-Field Approximation……Page 22
1.3.3 THE SPIN-EXCHANGE KAWASAKI MODEL……Page 23
1.3.3.1 Mean-Field Approximation……Page 27
1.4.1 CASE WITH SCALAR ORDER PARAMETER……Page 29
1.4.1.1 Static Interfaces or Kinks……Page 32
1.4.1.2 Equation of Motion for Interfaces and Growth Laws……Page 34
1.4.1.3 Correlation Function and Structure Factor……Page 36
1.4.1.4 Short-Distance Singularities and Porod’s Law……Page 37
1.4.1.5 Ohta–Jasnow–Kawasaki Theory……Page 40
1.4.1.6 Implications of the OJK Function……Page 45
1.4.1.7 Kawasaki–Yalabik–Gunton Theory……Page 49
1.4.2 CASE WITH VECTOR ORDER PARAMETER……Page 51
1.4.2.1 Generalized Porod’s Law……Page 52
1.4.2.2 Bray–Puri–Toyoki Theory……Page 53
1.5 DOMAIN GROWTH IN SYSTEMS WITH CONSERVED KINETICS……Page 54
1.5.1 SEGREGATION IN BINARY ALLOYS……Page 56
1.5.2.1 Dimensional Form of Model H……Page 61
1.5.2.2 Domain Growth Laws in Binary Fluids……Page 63
1.6 SUMMARY AND DISCUSSION……Page 65
REFERENCES……Page 67
2.1 INTRODUCTION……Page 71
2.2 HOMOGENEOUS VERSUS HETEROGENEOUS NUCLEATION……Page 74
2.3 CLASSIC THEORY OF HOMOGENEOUS NUCLEATION: STATIC DESCRIPTION……Page 76
2.4 KINETICS OF NUCLEATION AND GROWTH……Page 78
2.5 THE LINEARIZED THEORY OF SPINODAL DECOMPOSITION……Page 85
2.6 DENSITY-FUNCTIONAL THEORIES OF NUCLEATION……Page 89
2.7 A GINZBURG CRITERION FOR NUCLEATION NEAR A SPINODAL……Page 91
2.8 THE VALIDITY OF THE LINEAR THEORY OF SPINODAL DECOMPOSITION REVISITED……Page 96
2.9 SPINODALS AS A FINITE SIZE EFFECT: THE DROPLET EVAPORATION/CONDENSATION TRANSITION IN A FINITE VOLUME……Page 98
2.10 DISCUSSION……Page 103
REFERENCES……Page 104
3.1 PHASE SEPARATION IN THE ISING MODEL……Page 108
3.2 DOMAIN GROWTH WITHOUT CONSERVATION LAWS: MODEL A……Page 110
3.3 DOMAIN GROWTH WITH LOCAL CONSERVATION: MODEL B……Page 116
3.4.1 MULTISPIN CODING……Page 118
3.4.2 REJECTION-FREE IMPLEMENTATION……Page 121
3.4.3 TUNED DYNAMICS FOR MODEL B……Page 122
REFERENCES……Page 125
4.1 INTRODUCTION……Page 127
4.2.1 THERMODYNAMICS AND EQUATIONS OF MOTION OF A BINARY FLUID……Page 131
4.2.2 LATTICE BOLTZMANN MODEL FOR A BINARY FLUID……Page 135
4.2.3 DERIVING THE COEFFICIENTS IN THE EQUILIBRIUM DISTRIBUTION……Page 137
4.2.4 THE CONTINUUM LIMIT……Page 139
4.3 PHASE ORDERING IN BINARY FLUIDS……Page 141
4.3.1 SCALING ANALYSIS……Page 142
4.3.1.3 Inertial Hydrodynamic Growth……Page 143
4.3.2 SPINODAL DECOMPOSITION IN THREE DIMENSIONS……Page 144
4.3.3 SPINODAL DECOMPOSITION IN TWO DIMENSIONS……Page 146
4.3.4 GROWTH UNDER SHEAR IN BINARY MIXTURES……Page 148
4.4 PHASE ORDERING IN COMPLEX FLUIDS……Page 149
4.4.1 LAMELLAR ORDERING……Page 150
4.4.2 LIQUID CRYSTALS……Page 151
4.4.3 OTHER APPLICATIONS……Page 153
REFERENCES……Page 154
5.1 INTRODUCTION……Page 159
5.2 STATICS……Page 163
5.2.2 CORRELATION FUNCTION……Page 164
5.2.3 SPLITTING OF THE ORDER PARAMETER……Page 165
5.2.4 STATIC SUSCEPTIBILITY……Page 166
5.3 DYNAMICS……Page 167
5.3.1 EQUILIBRATION……Page 168
5.3.2 GENERIC PROPERTIES OF C(t, tw)……Page 169
5.3.3 SPLITTING OF THE ORDER PARAMETER……Page 173
5.4 LINEAR RESPONSE FUNCTION……Page 174
5.4.1 FLUCTUATION–DISSIPATION THEOREM……Page 175
5.4.2 GENERIC PROPERTIES OF R(t, tw)……Page 176
5.4.3 ZFC SUSCEPTIBILITY BELOW Tc……Page 179
5.4.4 FLUCTUATION–DISSIPATION RATIO……Page 181
5.4.5 PARAMETRIC PLOTS……Page 182
5.4.6 A SPECIAL CASE: THE QUENCH TO (dL, TF = 0)……Page 186
5.5 MODELS……Page 195
5.5.1 LARGE-n MODEL……Page 196
5.5.1.1 Statics……Page 197
5.5.1.2 Dynamics……Page 199
5.5.1.3 Splitting of the Order Parameter……Page 200
5.5.1.3.1 Quench to TF = Tc……Page 202
5.5.1.3.2 Quench to TF < Tc……Page 203
5.5.1.4 ZFC Susceptibility below Tc……Page 204
5.5.2 Kinetic Ising Model in d = 1……Page 206
5.6 THE EXPONENT a……Page 209
REFERENCES……Page 213
6.1 INTRODUCTION……Page 217
6.2 CAHN–HILLIARD EQUATION FOR DEWETTING: HYDRODYNAMIC APPROACH……Page 223
6.2.1 EXCESS INTERMOLECULAR FORCES……Page 224
6.2.1.1 Lifshitz–van der Waals Interactions……Page 225
6.2.1.2 Short-Ranged Repulsion……Page 227
6.2.1.3 Force Fields and Markers to Study Dewetting……Page 229
6.3 LINEAR STABILITY ANALYSIS……Page 230
6.4.2 NON-DIMENSIONALIZATION……Page 233
6.5 EMERGENCE OF A DOMINANT WAVELENGTH: A NEW UNIVERSAL DYNAMICS……Page 234
6.6.1 BEFORE FILM BREAKUP……Page 240
6.6.2 HOLE GROWTH……Page 244
6.7 DYNAMICS OF MORPHOLOGICAL PHASE SEPARATION……Page 250
6.8 SUMMARY AND CONCLUSIONS……Page 255
REFERENCES……Page 256
7.1 INTRODUCTION……Page 261
7.2 COARSE-GRAINED APPROACH……Page 265
7.3 GINZBURG–LANDAU THEORY……Page 266
7.4 FREE ENERGY IN TERMS OF THE INTERFACIAL TENSION……Page 269
7.5 SELF-CONSISTENT MEAN-FIELD THEORY……Page 270
7.6 TIME-EVOLUTION EQUATION……Page 272
7.7 MODE EXPANSION……Page 275
7.8 FORMATION OF EQUILIBRIUM STRUCTURES……Page 278
7.9 KINETICS OF MORPHOLOGICAL TRANSITIONS……Page 281
7.10 DIRECT SIMULATIONS OF THE EVOLUTION EQUATION……Page 283
7.11 ELASTIC THEORY FOR MESOSCOPIC STRUCTURES……Page 287
7.12 SUMMARY AND DISCUSSION……Page 293
REFERENCES……Page 294
8.1 INTRODUCTION……Page 300
8.2.1 FREE-ENERGY FUNCTIONAL……Page 303
8.2.2 ELASTIC STRESS, ELASTIC EQUILIBRIUM, AND DYNAMICAL EQUATION……Page 306
8.2.3 BILINEAR INTERACTIONS IN CUBIC SOLIDS WITH HOMOGENEOUS ELASTIC MODULI……Page 308
8.2.4 INTERACTIONS ARISING FROM ELASTIC INHOMOGENEITY……Page 310
8.3 ORDER-DISORDER PHASE TRANSITIONS AND PHASE SEPARATION IN BINARY ALLOYS……Page 315
8.3.1 GINZBURG–LANDAU THEORY OF BCC ALLOYS……Page 316
8.3.2 GINZBURG–LANDAU THEORY OF FCC ALLOYS……Page 321
8.4 NONLINEAR ELASTICITY MODEL: INCOHERENT CASE……Page 323
8.4.1 NONLINEAR ELASTIC ENERGY……Page 325
8.4.2 DISLOCATION DYNAMICS AND RHEOLOGY……Page 327
8.4.3 PHASE SEPARATION AROUND DISLOCATIONS……Page 330
REFERENCES……Page 332
Reviews
There are no reviews yet.